Li Jiyu, Zhan Yilong, Ou Yangfan, Li Yifan, Lan Yubin. Optimization of rotor spacing and energy consumption test for multi-rotor single arm tandem electric UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 87-95. DOI: 10.11975/j.issn.1002-6819.2019.23.011
    Citation: Li Jiyu, Zhan Yilong, Ou Yangfan, Li Yifan, Lan Yubin. Optimization of rotor spacing and energy consumption test for multi-rotor single arm tandem electric UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 87-95. DOI: 10.11975/j.issn.1002-6819.2019.23.011

    Optimization of rotor spacing and energy consumption test for multi-rotor single arm tandem electric UAV

    • Along with the continuous development of agricultural aviation application technology, an agricultural unmanned aerial vehicle (UAV) is widely used in modern agricultural production, which is the operation platform for implementing agricultural aviation technology. Due to the characteristics of simple operation, simple structure, easy maintenance and low cost, electric multi-rotor UAV is widely used in the field of agricultural aviation. However, it has the problems of small load capacity, short continuous operation time, low operation efficiency, etc. The multi-rotor single-arm tandem structure can effectively improve the load capacity and operation capacity of the electric UAV, but the structure will lead to the increase of the size and mass of the whole machine and reduce the effective utilization rate of energy, which still needs to be optimized and improved. Rotor spacing affects the overall performance of multi-rotor single-arm tandem electric UAV, but the influence of different rotor spacing on rotor lift of multi-rotor single-arm structure has not been studied. In this paper, by setting up a test platform and taking power consumption (P) and lift (F) as test indexes, the rotors with different spacing were tested, and the optimal spacing ratio between tandem rotors was analyzed and determined. The optimal spacing ratio was verified by theoretical analysis and flight test of solid aircraft. The lift performance and energy consumption of coaxial and tandem twin rotors at different spacing were tested. The results showed that the longitudinal spacing ratio had no effect on the lift performance, while the lateral spacing ratio had an effect on the lift performance. In order to further determine the optimal lateral spacing ratio, the variation law of rotor lift with lateral spacing ratio under the double rotor tandem arrangement was tested. When the lateral spacing ratio was less than 1.8, the lower rotor lift increased with the increase of lateral spacing ratio under the same power consumption. When the lateral spacing ratio was greater than 1.8, the lift of the lower rotor tended to be stable, and the average value of the lower rotor lift relative to the loss percentage of the isolated rotor was stable within 0.70%. When the lateral spacing ratio was equal to 1.8, the average loss percentage of the rotor lift under the tandem layout was 0.66% relative to the isolated rotor lift under different power consumption. At this time, the lower rotor lift is basically the same as the isolated rotor lift, thus determining that the optimal spacing ratio of the tandem double rotor was equal to 1.8. Secondly, by testing the variation of the lift force of two rotors with different sizes and the rotor lift force with the lateral spacing ratio under the tandem layout of multiple rotors, it was concluded that 1.8 was suitable for the tandem layout mechanism with different sizes and number of rotors. In order to validate the optimal effect of the lateral spacing ratio of 1.8 on the rotor spacing of the multi-rotor single-arm tandem electric UAV, this paper compared and analyzed the performance parameters of planar and tandem aircraft of six-axis 12-rotor UAV with multi-rotor single-arm structure. The results showed that compared with the tandem model with lateral spacing ratio 1.8, the fuselage size of the planar model increases by 38.70%, while the lift difference between the two is only 1.52%. Through flight tests, the results showed that under the same load, the hovering power per unit time of the planar model decreased by only 0.06%, while the fuselage mass increased by 6.82% compared with the optimized tandem model, the fuselage size increased by 38.7%. This paper studied the optimal rotor spacing of multi-rotor single-arm electric UAV. On the premise of ensuring the energy efficiency of the UAV, the rotor spacing of the multi-rotor single-arm structure electric UAV is optimized by changing the relative positions between the rotors, so as to optimize the fuselage size and mass, improve the aerodynamic characteristics of the multi-rotor single-arm structure UAV, reduce inertia, enhance payload capacity, and thus improve the overall performance.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return