Chang Zehui, Li Jianye, Li Wenlong, Hou Jing, Zheng Hongfei. Analysis on thermal performance of trough compound parabolic concentrator in solar drying device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 197-203. DOI: 10.11975/j.issn.1002-6819.2019.13.023
    Citation: Chang Zehui, Li Jianye, Li Wenlong, Hou Jing, Zheng Hongfei. Analysis on thermal performance of trough compound parabolic concentrator in solar drying device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 197-203. DOI: 10.11975/j.issn.1002-6819.2019.13.023

    Analysis on thermal performance of trough compound parabolic concentrator in solar drying device

    • Abstract: Drying is an energy intensive process, which reduces the moisture content of the material to a certain preselected level to prevent deterioration. The increasing of agro-food products' cost and the rapid depletion of fossil fuels accelerated the utilization of solar energy for drying. However, conventional open cycle solar drying system has several disadvantages, including the degradation of product quality caused by sudden rain, wind and dust, loss of the products due to rodents, birds and insects. To overcome these disadvantages and ensure better control of solar drying aspects, the direct solar drying systems have been designed and improved over decades. It has been noted that direct exposure to the sun during sunny day, particularly when the ambient temperature reaches to 30 ℃ or higher, might cause case hardening, which trapping moisture inside the products scattered. Based on the previous researches, this paper therefore designs a novel concentrated solar drying system. In this case, a trough compound parabolic concentrator (CPC) as heater is employed for solar-energy collection for heating of inlet air. Apart from this, the system is also configured with several trays, fan, operation air tube, control device, et al. Compared with the previous solar drying system, it not only improves the thermal efficiency of the system but also reduces the land area of the solar collectors. The system is suitable for use distributed and controllable for drying process. Its operation principle of the system can be shown as follows: Several concentrators installed with glass receiver are connected with air tubes. Then in the receiver, a plate heat transfer fin is spread by a black composite material coating to increase the sun absorptivity. The thickness of the fin is 1.5 mm. The air inside the receiver is heated to a higher temperature by the concentrated light. The heated air flows into the drying unit through the hot air pipe driven by fan. Then the flowing hot air passes through the materials placed on the trays. The materials will be heated and moisture will be removed. As the air driven by the fan flows towards exhaust pipe, the waste heat contained in the air in the exhaust pipe will transfer to the supplementary air in the cold air tube, which improves the system energy efficiency. The working principle of the trough compound parabolic concentrator and structure are introduced. A 3D model of the concentrator is obtained in commercial software SolidWorks, then is exported in IGES digital format so that it could be imported to optical analysis software to analyze ray tracing. The concentrating efficiency and optical efficiency of the concentrator have been calculated and analyzed. Based on the simulated results mentioned above, an experimental system driven by several trough compound parabolic concentrators is constructed to study the drying performance of the system outdoors. The geometric parameters of the concentrator unit are the same as the unit previously discussed. The results indicate when the radial incidence angle is 10°, the optical efficiency can reach to 70.38%. The light window is set in the sides of the concentrator has benefit to enhancement of the optical efficiency when axial incidence angle is not 0°. In sunny day, the maximum air temperature of the outlet can be reached to 37.2 ℃, which is higher than that of the unit when radial incidence angle is 10° by 7.8% when the air flow rate is 6.5m/s. A glass cover is placed on concentrator aperture to minimize convective heat losses from the receiver. The maximum thermal efficiency of the device with glass cover can be about 55%, which is higher than that of the concentrator without glass cover by about 120%. Thus, this study is able to provide theoretical and experimental reference for further application for active solar drying technology.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return