Luo kai, Yuan Panpan, Jin Wei, Yan Jinshan, Bai Shenghe, Zhang Chaoshu, Zhang Xuejun. Design of chain-sieve type residual film recovery machine in plough layer and optimization of its working parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 19-27. DOI: 10.11975/j.issn.1002-6819.2018.19.003
    Citation: Luo kai, Yuan Panpan, Jin Wei, Yan Jinshan, Bai Shenghe, Zhang Chaoshu, Zhang Xuejun. Design of chain-sieve type residual film recovery machine in plough layer and optimization of its working parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 19-27. DOI: 10.11975/j.issn.1002-6819.2018.19.003

    Design of chain-sieve type residual film recovery machine in plough layer and optimization of its working parameters

    • Abstract: Plastic film is large used in Xinjiang area, and it is hard to separate and collect the residual film of plough layer because of seriously fragmented. To solve the problem of residual film recovery in plough layer, chain-sieve type plastic residual film recovery machine was designed and developed. The machine was consisted of excavating shovel, barrier clearing mechanism, transmission mechanism, eccentric wheel, link mechanism, chain-tooth mechanism, film separating roller, vibration mechanism, frame and film box. Power of each part was provided by the transmission mechanism. The soil film mixture was excavated into the chain tooth mechanism by excavating shovel, then the chain-tooth mechanism was used for the first separation and sieving of the soil film mixture, then the sieved soil film mixture was transported to the vibration mechanism. The tail part of the chain-tooth mechanism was equipped with a film seperating roller, which scraped the film wound on the mechanism. After that, residual film was sent to film box by vibration mechanism. Vibration mechanism consists of vibration sieve and link mechanism, vibration and swing of vibration sieve was controlled by link mechanism, the soil film mixture was separated by the vibration sieve and then was conveyed to the film box. The size and parameters of the machine was determined by analysis and calculation. The key working parts of the machine were simulated and analyzed in ADAMS, and relevant motion parameters were obtained. The separation of the soil film mixture by the vibration mechanism requires that the speed range of the eccentric wheel was 25.79 rad/s≤ω≤31.40 rad/s. According to theoretical calculation and test, the speed of eccentric wheel was determined to be 255 r/min. The central composite design method of Box-BenhnKen was used to analyze the effect of working parameters on the residual film recovery rate. Three factors, three levels and one regression orthogonal test design were adapted, and moving speed, depth into soil and speed of driving wheel of conveyor chain were selected as the influence factors. In April 2017, field test was carried out in the six regiment of the first agricultural division of Xinjiang production and Construction Corps. Test area was divided into 17 test plots (each plots is 25 m×4 m), residual film recovery rate of plough layer at each test plot was calculated. The test results showed that average residual film recovery rate (ε) of plough layer was 83.34%. Response surface methodology was used to analyzed the effects of various factors on the recovery rate, the regression model optimization results were that moving speed was 1.317 m/s, depth into soil was 117.066?mm and speed of driving wheel of conveyor chain was 65.106 r/min. When the amplitude of the vibration mechanism was 79.1 mm and speed of driving wheel of conveyor chain was 255 r/min, the residual film recovery rate of field test was 85.07%, parameters optimization results meets requirements, the machine meets the performance requirements of plough layer residual film recovery. The method of combining chain-tooth mechanism with vibration mechanism provided a new idea for residual film recovery of plough layer.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return