Long Huaiyu, Zhang Huaizhi, Yue Xianlu, Zhang Renlian. Design and experiment of heavy liquid-type negative pressure valve used for negative pressure irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 85-92. DOI: 10.11975/j.issn.1002-6819.2018.01.012
    Citation: Long Huaiyu, Zhang Huaizhi, Yue Xianlu, Zhang Renlian. Design and experiment of heavy liquid-type negative pressure valve used for negative pressure irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 85-92. DOI: 10.11975/j.issn.1002-6819.2018.01.012

    Design and experiment of heavy liquid-type negative pressure valve used for negative pressure irrigation

    • Abstract: Negative pressure irrigation (NPI) is a high efficient irrigation technology which has attracted great concern from some Chinese scholars in the past decade. To produce and maintain a steady negative pressure is an essential key point for NPI, and at present there are mainly 5 methods, namely hanging water column (HWC), static water column (SWC), climbing water column (CWC), electromagnetic valve (EMV) and negative pressure water circulation (NPWC). However, due to some inherent shortcomings, those methods are not convenient to practically operate. The HWC is easily to fail due to the air embolus, the EMV and NPWC are energy-consuming, and too large heights of HWC, SWC, CWC and NPWC make them very cumbersome and not easy to install. In fact, the negative pressure results in the soil water sopping, which is always continuous, slow and unidirectional, and the function of the negative pressure maintaining device is similar to negative pressure limiting valve which does not need to act continuously or high frequently. Therefore, the heavy liquid static pressure should be theoretically used to control the negative pressure in the NPI system. It is known that 1 mmHg which can be easily determined with naked eyes can generate 0.133 kPa static pressure. Moreover, the negative pressure in actual NPI is seldom set under -30 kPa which is equivalent to 22.5 mmHg. Obviously, the negative pressure maintaining device using the static pressure of mercy whose density is the largest in the world to control the negative pressure in NPI should have high precision and small size, and be easily to operate. Accordingly, a heavy liquid-type negative pressure valve (HLNPV) was designed. The HLNPV consists of 3 basic interconnected parts, i.e., a U-shaped tube, an S-shaped pressure maintaining tube and a hollow ball, together with a certain amount of mercury which can be poured into them and cyclically flow in them. The negative pressure is maintained by the static pressure of the mercury in the S-shaped tube. Additionally, a device to slow down the air entering was installed between HLNPV and atmosphere, and the mercury in the hollow ball was overlapped by paraffin oil or water to prevent the evaporation of mercury. Laboratory test showed that the precision of HLNPV could reach 0.1 kPa, which is too enough for NPI, and the relative error of HLNPV with the theoretical control pressure from -5 to -30 kPa was less than 5%, which is satisfactory for NPI. In the field, most paraffin oil overlapping HLNPV could steadily run for the whole experiment period of 2-3 months, while the mercury in 15.5% of the HLNPV was oxidized after running for 1-3 months, and that in 6.2% of the HLNPV was blocked up by the oxide precipitate, which caused their failure to maintain negative pressure. Water-overlapping HLNPV could steadily run for the whole experiment period of 2-4 months, while water is a theoretic volatile liquid, if the runtime is more than 4 months, the overlapping water maybe need to be complemented. In one word, the HLNPV can overcome many disadvantages of the present negative pressure maintaining methods, and has the advantages of larger negative pressure, no energy consumption, small size, high accuracy, easy to install and debug, as well as more security. The mechanism, structure, application effect and suggestions for improvement of the HLNPV are described explicitly in this paper, thereby providing a reference for its further application, innovation and improvement.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return