Zhang Guangfa, Zhang Bin, Xu Jiashuai, Lü Jian. Technical and economical evaluation model of offshore scallops capture operation platform and its application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 278-284. DOI: 10.11975/j.issn.1002-6819.2016.08.039
    Citation: Zhang Guangfa, Zhang Bin, Xu Jiashuai, Lü Jian. Technical and economical evaluation model of offshore scallops capture operation platform and its application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 278-284. DOI: 10.11975/j.issn.1002-6819.2016.08.039

    Technical and economical evaluation model of offshore scallops capture operation platform and its application

    • Abstract: At present, trawl fishing as a traditional method is widely used in shellfish harvesting at home and abroad. However, using this method to catch the scallops has many disadvantages, such as huge energy consumption, high labor intensity, and poor fishing efficiency, which have become the key questions to restrict the sustainable development of marine fishing industry. Therefore, it's very worth researching alternative scallop fishing equipment to meet the requirements of green development. The offshore scallop capture equipment is made up of platform deck, floating body and mooring, which is a kind of floating offshore engineering structure. This equipment occupies multiple functions, such as fishing, sorting, refining, storage and so on. Winch motors (ground net machine and anchor winch), cargo winch, generator unit, scallop separator, working cabin, accommodation and diesel generator were installed on the platform, and solar power as the source of power. In addition, to keep the scallops fresh and achieve the purpose of saving space, 2 shellfish purification storage networks were also set below the platform. Compared with the trawl fishing, it would substantially reduce energy consumption, realize precision fishing, raise fishing efficiency, and decrease the cost of purification. In this paper, based on the comparative methods, the technologic and economic parameters and the economic assessment indices were selected for the establishment of the technical and economic evaluation model, which was to investigate the economy of offshore scallops capture working platform. Firstly, the platform trawling engine power, the platform span, the hauls of platform anchored one time, the lateral movement time of platform anchored one time, the trawling speed of platform and the total construction cost of platform were selected as the technologic and economic parameters. Secondly, the capture fuel consumption per unit area, the unit cost of fishing and the capture efficiency were selected as the economic assessment indices. Next, the technical and economic evaluation model was established according to the technologic and economic parameters and the economic assessment indices. At last, based on this model, the economic calculation of fishing methods including fishing vessels and scallops capture working platform was carried out by using the comparative method. The results showed that when the platform trawling engine power was 400-470 kW, the platform span was 0.5-3.0 km, the lateral movement time of platform anchored one time was less than 2 h, the trawling speed of platform was beyond 1.4 kn, the total construction cost of platform was less than 27.5 million yuan, the scallops capture working platform project had more advantages over the fishing method of fishing vessels. Meanwhile, from these data, it was concluded that the haul of platform anchored one time was not very sensitive to the effect of scallops capture working platform project. The offshore scallops capture working platform conformed the policy of energy saving and emission reduction that was in line with the national "Twelfth Five-Year Plan". By further experimental verification, the analysis model and method can provide the economic theory reference for the fundamental changes in fisheries production mode in China.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return