Zhao Jiangtao, Zhou Jinlong, Gao Yexin, Zeng Yanyan, Li Qiao, Du Mingliang. Spatial-temporal evolution of total dissolved solids of groundwater in plain area of Yanqi Basin, Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 120-125. DOI: 10.11975/j.issn.1002-6819.2016.05.017
    Citation: Zhao Jiangtao, Zhou Jinlong, Gao Yexin, Zeng Yanyan, Li Qiao, Du Mingliang. Spatial-temporal evolution of total dissolved solids of groundwater in plain area of Yanqi Basin, Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 120-125. DOI: 10.11975/j.issn.1002-6819.2016.05.017

    Spatial-temporal evolution of total dissolved solids of groundwater in plain area of Yanqi Basin, Xinjiang

    • Abstract: Yanqi Basin is one of the most important oasis agricultural areas of Xinjiang. But the ecological environment of Yanqi Basin is fragile, which depends on groundwater resources greatly. To study the spatial-temporal evolution of total dissolved solids (TDS) of groundwater is of great significance to groundwater exploitation in arid areas with fragile ecological system seriously affected by human. In order to identify the groundwater pollution status in the plain area of Yanqi Basin, 42 groundwater samples was collected in 2014. TDS and concentration of anion and cationic of the 42 groundwater samples were tested. T test was used based on the observed data of groundwater in the different periods of the plain area to determine the variability of TDS. The relationships between TDS and macro anion, macro cation, pH were analyzed with SPSS software. The results showed that TDS of groundwater was mainly affected by SO42-, Cl-, K++Na+, Mg2+ and Ca2+. And the TDS were highly correlated with Cl- and K++Na+. The correlation between the TDS and macro anion was highest, followed by Cl-, SO42-and HCO3-; the correlation between the TDS and macro cation was also high, followed by K++Na+, Ca2+ and Mg2+. Zone map of TDS was drewn by the MAPGIS software. In the temporal scale, the average of TDS of groundwater was increased then decreased and increased again from 1983 to 2014, and the average value was 305.0, 1773.1 and 589.44 mg/L in 1983, 1999 and 2014, respectively. In the spatial scale, the TDS of groundwater evolved horizontally from piedmont to the plain area. The TDS of groundwater increased from upstream to downstream. Influenced by topography and hydrogeology conditions, the main hydrogeochemistry action changed from strong runoff to slow evaporation gradually. Area of groundwater with TDS<1 g/L showed an increasing trend but a decreasing trend from 1999 to 2014, which was consistent with downtrend of the mean value of TDS from 1999 to 2014 increased from 2011.7 to 2229.3 km2. There were 2 main reasons causing that change of groundwater TDS: 1) The groundwater table dropped from 4.98 to 7.34 m from 2000 to 2014, which prompted the solid phase calcium and magnesium soluble salts, insoluble salts and exchangeable calcium and magnesium in the soil and the lower layer sediments transferred to the groundwater; Meanwhile the increase of the groundwater table in the plain area led to high solutes concentration; 2) Urbanization had the great influence on the groundwater system. It changed the original land use patterns, and then the groundwater circulation system. And with the development of urbanization, industrial and domestic waste water increased year by year and could infiltrate into aquifer. The discharge of living and industrial waste water led to groundwater pollution, which was consistent with the dominant role of Cl- and SO42- in TDS. The study provide valuable information for understanding the condition of underground in Xinjiang.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return