Wen Tao, Zheng Lizhang, Gong Zhongliang, Li Lijun, Sang Mengxiang, Dong Shuai. Design and performance experiment of bionic olfactory detection device using purging method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 251-258. DOI: 10.11975/j.issn.1002-6819.2017.08.034
    Citation: Wen Tao, Zheng Lizhang, Gong Zhongliang, Li Lijun, Sang Mengxiang, Dong Shuai. Design and performance experiment of bionic olfactory detection device using purging method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 251-258. DOI: 10.11975/j.issn.1002-6819.2017.08.034

    Design and performance experiment of bionic olfactory detection device using purging method

    • Abstract: In order to study the performance of bionic olfactory detection device, the bionic olfactory detection device was designed using purging method in this research This detection device consisted of the gas transmission and flow control pipes, the bionic olfactory control unit and the software of bionic olfactory detection analysis. The gas transmission and flow control pipes were the carrier of bionic olfactory gas transmission, and the bionic olfactory control unit completed the signal output and sensor signal acquisition, the software of bionic olfactory detection analysis could not only complete setting up parameters in the process of olfactory detection analysis and controlling working process, but also complete data preprocessing, feature extraction and pattern recognition. According to current documents, the heating voltage of sensor array, gas humidity and gas flow have an effect on the performance of this device. In order to study the effect of these control parameters on the performance of detection device, the ethylene and nitrogen gas were respectively selected as testing sample and carrier gas, and each of the control parameters was studied with single factor experiment. Then, according to the sensibility, response time, recovery time of sensor array, the optimal control parameters of this device were selected. Furthermore, the feasibility and performance of the bionic olfactory detection device were verified under optimized control parameters. The results of experiment showed that the sensitivity of the sensor array increased with the increase of heating voltage. When the heating voltage of sensor was 5.0 V, the sensibility of the sensor array was the maximum, which ranged from 2.260 to 4.823, and the response and recovery time of the sensor array were both the minimum, which ranged from 46 to 53 s and from 44 to 70 s, respectively. So when the heating voltage of sensor was 5.0 V, the detection device could get a better performance. When the humidity increased, the sensibility of the sensor array decreased, and the response time and recovery time of the sensor array were both lengthened. So, when the relative humidity of the gas was 30%, the detection device could get a better performance. The sensibility of the sensor array firstly increased and then decreased with the increment of the gas flow; the response time and recovery time of the sensor array firstly decreased and then increased with the increment of the flow. If the sensitivity, recovery time and recovery time of the sensor array were comprehensively considered, when the flow was 100 mL/min, the sensibility of the sensor array was the maximum, which ranged from 2.853 to 7.559, the response and the recovery time of the sensor array were the minimum, which ranged from 35 to 50 s and from 30 to 50 s, respectively. So, when the flow was 100 mL/min, the detection device could get a better performance. Therefore, when the heating voltage of sensor was 5.0 V, the relative humidity of the gas was 30%, and the flow was 100 mL/min, these control parameters were the optimal control parameters. The detection device adopted the optimized control parameters, and then the device was used to detect the ethylene gas with the volume fraction of 0.002%, 0.004%, 0.006%, 0.010%, 0.020%, 0.030%, 0.040% and 0.050%. The results showed that when the volume fraction was controlled in the range of 0.002%-0.020%, the sensibility of the device was higher, which ranged from 3 577.1 to 6 700.7, and the linearity and repeatability of the device were both better, whose coefficient of determination was from 0.901 to 0.997, and coefficient of variation ranged from 0.832% to 9.696%. So, the device can meet the requirements of odor detection, and also can provide data reference and technical support for the further research on the application of bionic olfaction.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return