Zhao Leilei, Yu Yuewei, Cao Jianhu, Tan Di, Sun Fajun, Huang Dehui. Analytical algorithm for the stress of damper throttle-slices and its application under interval uniformly distributed pressure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 72-80. DOI: 10.11975/j.issn.1002-6819.2022.18.008
    Citation: Zhao Leilei, Yu Yuewei, Cao Jianhu, Tan Di, Sun Fajun, Huang Dehui. Analytical algorithm for the stress of damper throttle-slices and its application under interval uniformly distributed pressure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 72-80. DOI: 10.11975/j.issn.1002-6819.2022.18.008

    Analytical algorithm for the stress of damper throttle-slices and its application under interval uniformly distributed pressure

    • Abstract: Damper throttle-slices of the cab relies generally on the Finite Element (FE) method for the stress characteristic analysis. It is still a lack of an analytical algorithm for the engineering application. This study aims to construct the analytical algorithm, the program interface of the stress characteristic analysis, the verification, and the thickness split design of throttle-slices of the cab for agricultural vehicles. The stress analytical formula was deduced using the stress influence coefficient. Then, a simple and practical analytical algorithm was proposed for the stress characteristic of the damper throttle-slices under the interval uniformly distributed pressure for cabs. The parameters were considered, such as the interval uniformly distributed pressure, the number of pieces, the thickness, the valve port radius, the upper gasket radius, and the lower gasket radius. The FE simulation and the theoretical analysis show that the analytical stress values of each slice at different radius positions under the working pressure were close to the simulation values for the circumferential stress, radial stress, and composite stress. Moreover, the relative deviations were all within 1.5%. The stress influence coefficient was obtained under the section uniform pressure. There were the same radial, circumferential, and composite stress influence coefficients of each slice, particularly independent of the slice thickness and section uniform pressure. Among them, the maximum influence coefficient occurred at the radius rd of the lower gasket. The stress analytical formulae revealed that the greater the thickness of each slice was, the greater the radial, circumferential, and composite stress values were. The analytical algorithm was used to establish the rapid stress check, the split design of the thickness, and the optimization design. The effectiveness of the analytical algorithm was further verified by the case study and the damper test. The throttle-slice fracture occurred before the number of tests reached 50 000 times in the damper equipped with the original single slice. The damper that was assembled with the designed superimposed throttle-slices worked normally after more than 1.0 million times. Moreover, there was no slice fracture, indicating the effective thickness split of superposition slices in the damper. The algorithm effectively avoided many FEM limitations. There was the internal physical relationship between the structural parameters and the stress of the superimposed throttle-slices, the influence of the structural parameters on the stress, the rapid check of the stress intensity of the throttle-slices, and the disassembly design of the throttle-slices. The finding can provide a more practical and convenient effective tool for the relevant engineering and technical personnel.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return