Li Qian, Chu Mengyuan, Kang Xi, Liu Gang. Research progress on lameness recognition technology in dairy cows using computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 159-169. DOI: 10.11975/j.issn.1002-6819.2022.15.017
    Citation: Li Qian, Chu Mengyuan, Kang Xi, Liu Gang. Research progress on lameness recognition technology in dairy cows using computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 159-169. DOI: 10.11975/j.issn.1002-6819.2022.15.017

    Research progress on lameness recognition technology in dairy cows using computer vision

    • Digitization has been one of the significant directions in the rural land governance reform in the future. However, it is still lacking in the logical concepts and framework for the digital governance of rural land. In this study, a three-dimensional system framework of "demand-baseline-function" was established using the perspective of the transaction cost. An emphasis was also put on the construction of the digital system for land acquisition and relocation. Firstly, the basic, core and conflict needs of the participants were clarified ranging from the government, land users, and the original land stakeholder. Secondly, the bottom line was defined as the legal, spatial, and regulatory governance. Thirdly, the digital system was classified to design various digital realities. The future functional modules were selected to entirely reduce the transaction costs, thereby integrating the multiple sharing systems for the overall operational efficiency. In addition, Zhejiang Province of China was selected as the experimental area for the system design. The reason was that Zhejiang Province has been the representative region in the digital reform of land governance in recent years. Nevertheless, there was a high transaction cost in the process of land acquisition and relocation. It is also a high demand to effectively build a digital system during this time. As such, the actual system was designed to combine with the improved the digital framework. The result showed that the "demand-baseline-function" framework effectively guided the development and design of the "intelligent land acquisition and demolition" digital system in the actual application situation. The transaction costs were also reduced to fill the logical blank for the previous system of land digital governance. The demand analysis demonstrated that the improved system provided the port to fully meet the basic and core needs of the government, land users, collectives, and farmers. The information asymmetry, discourse game, and conflict transmission effectively reduced the transaction cost of the game between the subjects. The bottom line was clarified for the implementation boundary of the law and space of the land requisition and relocation process. The whole supervision system of land requisition and relocation was constructed to stabilize the land requisition and relocation environment. The functional analysis revealed that the improved system coordinated the actual and upgrade function of the "intelligent land acquisition and demolition" digital system. The logical framework effectively reduced the negotiation and decision cost, while the implementation and supervision cost, as well as the management and sunk costs in the land acquisition and demolition. Therefore, the "demand baseline function" framework can provide a strong reference for the transaction cost in the digital reform of land governance. Anyway, the underlying construction logic of the framework can also be applicable to the other areas without the digital construction guidance, providing for the most general transaction cost in the rural land governance. In addition, the logical framework of the system can also provide a strong reference for the digital transformation of rural land governance in the future, in order to improve the digital level of land space and the modernization of governance capacity.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return