Wang Kejie, Hu Bin, Luo Xin, Chen Xuegeng, Zheng Xuan, Yan Limin, Gou Haixiao. Design and experiment of monomer profiling raking-film mechanism of residue plastic film collector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 12-20. DOI: 10.11975/j.issn.1002-6819.2017.08.002
    Citation: Wang Kejie, Hu Bin, Luo Xin, Chen Xuegeng, Zheng Xuan, Yan Limin, Gou Haixiao. Design and experiment of monomer profiling raking-film mechanism of residue plastic film collector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 12-20. DOI: 10.11975/j.issn.1002-6819.2017.08.002

    Design and experiment of monomer profiling raking-film mechanism of residue plastic film collector

    • Abstract: The collecting machinery of mulching plastic film offers an important technological means to curb the farmland residue pollution. The main method of residual film recycling in Xinjiang is the raking-film working. Due to the complex cotton field environment and the poor raking film effect of whole profiling of the used plastic film collector, the raking film tooth can not simultaneously carry out the monomer film collecting with copying with different cotton field terrain, which causes a low collecting rate during the process of residual film recycling. For the problem, this paper proposed a collecting-film mechanism of the profiling of the monomer. The theoretical design and mechanical analysis of the mechanism of collecting film were carried out. With the method of complex vector, the profiling-mechanism dynamics model was established, which involved the relationship between the reacting force of soil to land wheel of profiling and the spring-tooth resilience force. Based on the establishment and analysis of dynamics model, the collecting-film influencing factor could be initially determined. And the relevance of the spring-tooth stress states and the raking-film mechanism's operating condition was further explored. In order to confirm the operation parameters of the device of collecting film, the experiment of the response surface with 5 levels and 3 factors was accomplished on the soil bin trolley test-bed with the spring tooth of the raking film. Three test parameters, i.e. spring tooth number, test-car speed and spring tooth diameter, were chosen as the influence factors of the test-bed experiment. And collecting rate of residual film recycling was selected as the evaluation index of the test-bed experiment. Quadratic orthogonal rotation combination trial design was applied to build the quadratic polynomial regressive model, which interpreted the relationship between the experimental influence factors and evaluation index. Using the data analysis software of Design-Expert 8.0.6, the matching mathematical regression pattern was developed, the relation of salient factors with the evaluation index was analyzed, and the parameters of test were improved. The optimum combination of parameters could be reached when the number of spring teeth was 5, the diameter of spring tooth was 12 mm, and the speed of test car was 1.85 m/s. By using the soil bin trolley testing, the optimized results were verified on the basis of optimization parameters combination. The experimental consequences manifested that the collecting-film rate of the mechanism of monomer profiling raking-film was more than 88.5%, the optimization prediction model based on the quadratic multinomial fitting model was reliable, and the film recycling requirement could be met by the structure and working parameters combination. According to the standing cotton stalks standard field experiment in Changji, Xinjiang, the experimental cotton field was selected, which was pressed by the wheel of picking cotton locomotive and produced different fluctuation of pits and soil slope, and the results from the cotton field and the laboratory were basically consistent. The research provides an original theoretical reference for the design of raking film mechanism of single profiling, as well as the parameter optimization of remnant plastic film collector.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return