张昊, 孟庆婷, 陶元庆, 王振清, 康少朋, 张祥祥. 地下粮仓塑料-混凝土防水体系抗水压试验[J]. 农业工程学报, 2020, 36(21): 292-299. DOI: 10.11975/j.issn.1002-6819.2020.21.035
    引用本文: 张昊, 孟庆婷, 陶元庆, 王振清, 康少朋, 张祥祥. 地下粮仓塑料-混凝土防水体系抗水压试验[J]. 农业工程学报, 2020, 36(21): 292-299. DOI: 10.11975/j.issn.1002-6819.2020.21.035
    Zhang Hao, Meng Qingting, Tao Yuanqing, Wang Zhenqing, Kang Shaopeng, Zhang Xiangxiang. Experiment on water pressure resistance of plastic-concrete waterproof system of underground granary[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 292-299. DOI: 10.11975/j.issn.1002-6819.2020.21.035
    Citation: Zhang Hao, Meng Qingting, Tao Yuanqing, Wang Zhenqing, Kang Shaopeng, Zhang Xiangxiang. Experiment on water pressure resistance of plastic-concrete waterproof system of underground granary[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 292-299. DOI: 10.11975/j.issn.1002-6819.2020.21.035

    地下粮仓塑料-混凝土防水体系抗水压试验

    Experiment on water pressure resistance of plastic-concrete waterproof system of underground granary

    • 摘要: 地下粮仓具有节能、节地、低温和绿色环保等优点,但由于地下水的影响,防水防潮一直是安全储粮的技术难题,为此提出以聚丙烯塑料(Polypropylene Plastic,PP)作为内衬材料的塑料-混凝土防水体系,其中,塑料板与混凝土采用塑料栓钉连接。考虑不同栓钉间距200、300和400 mm,设计制作了3个用于地下粮仓的塑料-混凝土水压试件,进行了水压加载试验,分析了塑料构件在水压作用下形态、破环机理、内力和变形。试验结果表明:在水压作用下,塑料板内应力和位移都随水压的增大而增大,节点位置承受较大拉力且应力最大值分布不均,跨中位置承受应力较小且最大值分布均匀;塑料板内跨中位置的位移值随水压增大呈线性增加,节点位置的位移值变化较小。在试验分析的基础上,在10 mm厚塑料板和给定连接节点条件下,提出了塑料-混凝土防水体系优化设计措施,塑料-混凝土防水体系达到水压承载力时其破坏模式随栓钉间距的变化而不同,在栓钉间距为200 mm时,其水压承载力达到180 kPa时发生节点焊缝强度破环,此类构件可通过增强节点处焊缝强度提高塑料构件的整体水压承载力;在栓钉间距为300 mm时,其水压承载力达到80 kPa时发生塑料板破环,此类构件可通过增大板厚来提高构件的整体水压承载力;在栓钉间距为400 mm时,其水压承载力达到38 kPa时发生节点焊缝强度破环,此类构件可增大节点焊缝强度来提高构件的整体水压承载力,研究结果为地下粮仓的防水设计提供参考。

       

      Abstract: The underground granary has the advantages of energy conservation, land saving, low temperature, and environment protection. However, resistance of water and moisture from the groundwater has been main concerns for storing grains in underground granary. A plastic-concrete waterproof system using the polypropylene plastic (PP) as the waterproof layer was proposed. In this system, the plastic plate and concrete components were connected with plastic studs. Three plastic-concrete testing models were designed and fabricated based on the different stud spaces for the underground granary. In order to analyze the failure mode, failure mechanism, internal force and deformation of the plastic members under the water pressure, hydraulic loading tests were carried out. The test results showed that: the internal stress and displacement of the plastic plate increased with the increase of water pressure; the larger tensile force appeared at the joint area with the maximum stress unevenly distributed; the stress at mid-span was small with the maximum stress uniformly distributed. The displacement at the mid-span of the plastic plate increased linearly with increase of water pressure, whereas the displacement displacement at the joint changed slightly. On the basis of experimental analysis, the optimal design measures were proposed for the plastic-concrete waterproof system with plastic plate of 10 mm and given connection joints. When the water pressure reached its bearing capacity the failure modes of the plastic-concrete waterproof system were changed with change stud spacing. For the stud space of 200 mm, the joint weld seam was damaged at the water pressure of 180 kPa, which indicated that the overall water pressure bearing capacity of the testing model could be improved by enhancing the weld strength at the joint. For the stud space of 300 mm, the plastic plate was damaged with the water pressure capacity of 80 kPa, which indicated that the overall water pressure bearing capacity of the testing model could be enhanced by increasing the plate thickness. For the stud space of 400 mm, the joint weld seam was destroyed when the water pressure reached 38 kPa, the overall water pressure bearing capacity of the testing model could be enhanced by increasing the strength of the joint weld seam. The research results can provide a reference for waterproof design of the underground granary.

       

    /

    返回文章
    返回