黄明逸, 张展羽, 翟亚明, 王策, 齐伟, 朱成立. 咸淡交替灌溉下生物炭对滨海盐渍土及玉米产量的影响[J]. 农业工程学报, 2020, 36(21): 88-96. DOI: 10.11975/j.issn.1002-6819.2020.21.011
    引用本文: 黄明逸, 张展羽, 翟亚明, 王策, 齐伟, 朱成立. 咸淡交替灌溉下生物炭对滨海盐渍土及玉米产量的影响[J]. 农业工程学报, 2020, 36(21): 88-96. DOI: 10.11975/j.issn.1002-6819.2020.21.011
    Huang Mingyi, Zhang Zhanyu, Zhai Yaming, Wang Ce, Qi Wei, Zhu Chengli. Effects of biochar on coastal saline soil and maize yield under alternate irrigation with brackish and freshwater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 88-96. DOI: 10.11975/j.issn.1002-6819.2020.21.011
    Citation: Huang Mingyi, Zhang Zhanyu, Zhai Yaming, Wang Ce, Qi Wei, Zhu Chengli. Effects of biochar on coastal saline soil and maize yield under alternate irrigation with brackish and freshwater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 88-96. DOI: 10.11975/j.issn.1002-6819.2020.21.011

    咸淡交替灌溉下生物炭对滨海盐渍土及玉米产量的影响

    Effects of biochar on coastal saline soil and maize yield under alternate irrigation with brackish and freshwater

    • 摘要: 滨海滩涂地区蕴藏着丰富的微咸水资源,该研究提出咸淡交替灌溉和生物炭相结合的方法来促进这类次等水土资源的农业生产。于2017年和2018年进行了遮雨条件下滨海盐渍土玉米种植试验,并设置了不同咸淡交替灌溉(全淡水灌溉,分别在六叶至抽雄、抽雄至吐丝、吐丝至成熟期灌溉3 g/L微咸水而其余时期淡水)和生物炭(0、15、30 t/hm2)处理。结果表明,咸淡交替灌溉下盐渍土电导率和碱化度明显升高,盐渍化程度与微咸水比例和顺序有关。六叶至抽雄期微咸水灌溉可严重抑制叶片生长和干物质累积,并导致籽粒数量和重量下降,造成27.2%~32.8%减产;抽雄至吐丝期微咸水灌溉下作物受损降低,但减少了籽粒数量,造成11.4%~14.0%减产;吐丝至成熟期微咸水灌溉无明显影响。施用生物炭后,咸淡交替灌溉下盐渍土电导率和碱化度降低了3.7%~21.7%和9.2%~45.2%,总孔隙度和水稳性团聚体增加了3.1%~11.9%和40.0%~168.9%,有效氮、磷、钾含量提高了34.9%~104.0%、21.0%~58.1%和13.6%~57.8%。随着土壤条件改良,生物炭有助于增强玉米生长前中期的耐盐性能进而缓解盐胁迫危害,在六叶至吐丝期间灌溉微咸水仍能保持良好的叶面积指数、干物质累积和产量特性,因此促进了咸淡交替灌溉的可行性和适用性,相同交替灌溉下籽粒产量提高了10.9%~32.3%。该结果对滨海地区盐渍化水土资源的农业利用具有指导作用。

       

      Abstract: The coastal areas possess substantial brackish water resources. The agricultural utilization of saline soil and brackish water resources in coastal regions is crucial to guarantee food security and can be conducive to alleviate increasing land demands and water shortages. Nonetheless, suitable irrigation and field management is essential to improve agricultural production of coastal saline soil and brackish water. In this study, alternate irrigation with brackish and freshwater combined with biochar was proposed to promote the agricultural utilization of these low-quality soil and water resources. A maize planting experiment in coastal saline soil was carried out using field plots under the condition of rain shelter in 2017 and 2018, respectively. We investigated the effects of alternate irrigation with brackish and freshwater and biochar application on coastal soil properties and maize yield parameters. The maize growth season was separated into three periods, that is, the six leaves stage to the tasseling stage, the tasseling stage to the silking stage, and the silking stage to the maturity stage. The alternate irrigation with brackish and freshwater was carried out by using brackish water irrigation during one of the three periods and freshwater irrigation during the remaining stages. The check treatment was conducted by using freshwater irrigation throughout the whole growing season. Biochar with three application rates (0, 15, 30 t/hm2) was incorporated into the surface layer of coastal saline soil in the first experiment year, respectively. Maize leaf area index was observed during the growing season. Maize dry matter accumulation and yield parameters were measured at harvest. Soil properties related to soil salinization, porosity, aggregate, and nutrient content were determined after harvest. The electrical conductivity and exchangeable sodium percentage of coastal saline soil remarkably increased under alternate irrigation with brackish and freshwater. The soil salinization was related to the proportion and order of brackish water use. The brackish water irrigation during the six leaves stage to the tasseling stage severely inhibited maize leaf growth and dry matter accumulation, and lead to a decline in grain number and grain weight, resulting in a 27.2%-32.8% yield reduction. The reduction in maize growth and production by the brackish water irrigation during the tasseling stage to the silking stage was less, but the reduced grain number still resulted in a 11.4%-14.0% yield reduction. The brackish water irrigation during the silking stage to the maturity stage did not have a significant adverse effect on maize growth and yield. Under alternate irrigation with brackish and freshwater, biochar application reduced the electrical conductivity and exchangeable sodium percentage of coastal saline soil by 3.7%-21.7% and 9.2%-45.2%, respectively. The total porosity and water-stable aggregate with biochar applications were increased by 3.1%-11.9% and 40.0%-168.9%, respectively. Biochar application also promoted the soil nutrient status and increased available nitrogen, available phosphorus, and available potassium content by 34.9%-104.0%, 21.0%-58.1%, and 13.6%-57.8%, respectively. With the improvement in soil conditions, biochar application was helpful to enhance salt tolerance in the early and middle stages of maize growth, thus alleviating the damage of salt stress under brackish water irrigation. The maize maintained a good condition of leaf area index, dry matter accumulation, and yield characteristics when brackish water irrigation was applied during the six leaves stage to the silking stage. Therefore, biochar application promoted the feasibility and applicability of alternate irrigation with brackish and freshwater. Compared to the treatments without biochar application, the grain yield of the treatments with biochar application increased by 10.9%-32.3% under the same alternate irrigation with brackish water and freshwater. The results could be helpful to improve the agricultural utilization of saline soil and brackish water resources in coastal regions.

       

    /

    返回文章
    返回