牛文娟, 冯雨欣, 钟菲, 赵艺, 刘念, 赵立欣, 孟海波, 牛智有. 秸秆微波水热炭和活性炭理化及电化学特性[J]. 农业工程学报, 2020, 36(17): 202-211. DOI: 10.11975/j.issn.1002-6819.2020.17.024
    引用本文: 牛文娟, 冯雨欣, 钟菲, 赵艺, 刘念, 赵立欣, 孟海波, 牛智有. 秸秆微波水热炭和活性炭理化及电化学特性[J]. 农业工程学报, 2020, 36(17): 202-211. DOI: 10.11975/j.issn.1002-6819.2020.17.024
    Niu Wenjuan, Feng Yuxin, Zhong Fei, Zhao Yi, Liu Nian, Zhao Lixin, Meng Haibo, Niu Zhiyou. Physicochemical and electrochemical properties of microwave-assisted hydrochars and activated carbons from straws[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 202-211. DOI: 10.11975/j.issn.1002-6819.2020.17.024
    Citation: Niu Wenjuan, Feng Yuxin, Zhong Fei, Zhao Yi, Liu Nian, Zhao Lixin, Meng Haibo, Niu Zhiyou. Physicochemical and electrochemical properties of microwave-assisted hydrochars and activated carbons from straws[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 202-211. DOI: 10.11975/j.issn.1002-6819.2020.17.024

    秸秆微波水热炭和活性炭理化及电化学特性

    Physicochemical and electrochemical properties of microwave-assisted hydrochars and activated carbons from straws

    • 摘要: 为了解秸秆微波酸催化水热炭和碱活化活性炭形成机制和理化特性演变规律,该研究开展了不同柠檬酸质量分数下的秸秆微波水热和活性炭的制备试验,并研究了水热炭和活性炭理化及其电化学特性。结果表明,随柠檬酸质量分数的增加,秸秆水热炭的产率、挥发份和H含量减少,而其灰分、固定碳、C和高位热值增加,且酸质量分数为10%后趋于稳定。柠檬酸质量分数为10%时,水热炭的碳微球结构最丰富,其比表面积和孔体积最大,且以中孔为主。10%柠檬酸水热炭在900℃下经KOH活化后的活性炭产率为8%~11%,活化气体产率为32%~35%,且以CO和H2为主。900 ℃活性炭的比表面积为1 250~1 570 m2/g,总孔体积为1.00~1.20 cm3/g,孔径为3.55~4.10 nm,且以中孔和微孔为主。当电流密度为1 A/g,水稻、玉米和油菜秸秆活性炭的比电容分别为160.54、150.12和155.17 F/g,且循环5 000次后的电容保持率分别为91.04%、88.12%和89.06%,表现出较好的循环稳定性。水稻秸秆水热炭和活性炭的产率、灰分、碳转化率、能量转化率、比表面积、总孔体积、比电容和电容保持率最大。

       

      Abstract: It is of great significance to comprehensively study the physicochemical properties of microwave-assisted hydrochar Hydrochars (carbon-rich solids) from biomass can be converted to activated carbons via hydrothermal carbonization. This offers a promising way for the disposal of the lignocellulosic wastes in modern agriculture. In this study, a systematic investigation was made to explore the physicochemical and electrochemical properties of microwave-assisted hydrochar and alkali-activated carbon from straws. A microwave hydrothermal experiment was carried out using straws with different mass fractions of citric acid for the preparation of hydrochar and alkali-activated carbon. The physicochemical behaviors of the hydrochars and alkali-activated carbon were also investigated using various characterization techniques. The results showed that the yield, volatile matter and H content of the hydrochar from straws decreased, whereas, the ash, fixed carbon, C, S and higher heating value increased, as the mass fraction of citric acid increased. These parameters tended to be stable, when the acid mass fraction reached 10%. In the hydrochar, the conversion rate of oxygen, carbon, and calorific value first decreased, and then increased during the test. Hydrochar with the citric acid mass fraction of 10% exhibited the most abundant carbon microsphere structure, as well as the largest specific surface area and pore volume, with the mesopore volume of 0.06-0.10 cm3/g. After the 10% citric acid, the hydrochar was activated by KOH solution at 900℃. The yield of activated carbon was about 8%-11%, while, that of activated gas was about 32%-35%, mainly including CO and H2. The total output of combustible gases was 450-530 L/kg. The abundant pore structure was formed for the activated carbon at 900℃, where the specific surface area, total pore volume, and diameter of pores were 1 250-1 570 m2/g, 1.00-1.20 cm3/g, and 3.55-4.10 nm, respectively. The majority of pores were the mesopores of 0.69-0.81 cm3/g and micropores of 0.35-0.38 cm3/g. Compared with hydrochars, the activated carbon showed the lower strength of O-H, aliphatic C-H, C=O, C=C and C-C, while, the higher intensity of peak energy in C-O-C bond. Similar to the hydrochars, the graphitization degree of activated carbon decreased, due to the increasing disorder and defects in carbon, indicating suitable for the energy storage of electrode materials. At low scanning rates, the cyclic voltammetric curves of activated carbon behaved symmetrical rectangular shapes, indicating that the characteristic of a typical double electric layer capacitance occurred in the activated carbon. Nevertheless, the cyclic voltammetric curve was gradually deformed, as the scanning rate increased. When the current density was 1 A/g, the specific capacitances of activated carbon at 900°C based on hydrochars from rice straw, maize stover and rape stalk were 160.54, 150.12 and 155.17 F/g, respectively. The capacitance retention rates of activated carbon from rice straw, maize stover and rape stalk after 5000 cycles were 91.04%, 88.12% and 89.06%, respectively, showing a good cycle stability. Among different straws, the rice straw showed the highest yield, ash content, carbon conversion rate and energy conversion rate of hydrochar and activated carbon. The maize stover represented the highest fixed carbon, C and higher heating value of hydrochar and activated carbon, whereas, the rape stalk displayed the lowest carbon conversion rate of hydrochar and activated carbon. The hydrochar and activated carbon from rice straw indicated the largest specific surface area, total pore volume, mesopore volume and micropore volume, whereas, those from rape stalk showed the largest pore size. The activated carbon from rice straw demonstrated the strongest vibration absorption peak of oxygen-containing functional groups, the lowest graphitization degree, as well as the largest specific capacitance, and highest capacitance retention rate. The findings can be benefit to improving the quality of hydrochar, and the utilization of activated carbon as electrode materials in intelligent industry.

       

    /

    返回文章
    返回