石林榕, 马周泰, 赵武云, 杨小平, 孙步功, 张建平. 胡麻籽粒离散元仿真参数标定与排种试验验证[J]. 农业工程学报, 2019, 35(20): 25-33. DOI: 10.11975/j.issn.1002-6819.2019.20.004
    引用本文: 石林榕, 马周泰, 赵武云, 杨小平, 孙步功, 张建平. 胡麻籽粒离散元仿真参数标定与排种试验验证[J]. 农业工程学报, 2019, 35(20): 25-33. DOI: 10.11975/j.issn.1002-6819.2019.20.004
    Shi Linrong, Ma Zhoutai, Zhao Wuyun, Yang Xiaoping, Sun Bugong, Zhang Jianping. Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 25-33. DOI: 10.11975/j.issn.1002-6819.2019.20.004
    Citation: Shi Linrong, Ma Zhoutai, Zhao Wuyun, Yang Xiaoping, Sun Bugong, Zhang Jianping. Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 25-33. DOI: 10.11975/j.issn.1002-6819.2019.20.004

    胡麻籽粒离散元仿真参数标定与排种试验验证

    Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test

    • 摘要: 为借助离散单元法优化胡麻机械化生产装备提供胡麻基本参数,该文对甘肃省普遍种植的定亚22号、陇亚10号、陇亚13号3种胡麻籽粒通过试验法测定了胡麻籽粒的基本物理参数(3个方向尺寸、质量密度、体积密度、泊松比、千粒重、含水率、弹性模量)和接触力学参数(恢复系数、静摩擦系数);通过调整胡麻模型的滚动摩擦系数条件下形成的胡麻堆积角逼近胡麻实际堆积角方法,预测胡麻滚动摩擦系数。结果表明:定亚22号胡麻滚动摩擦系数为0.041 5、陇亚10号为0.042 5、陇亚13号为0.042 0。探讨了胡麻堆积角形成过程中滚动摩擦系数对胡麻与底板接触数量、胡麻动能和重力势能影响变化规律,结果表明:随着滚动摩擦系数的减少,胡麻与底板的接触数量增加,胡麻种群的转动动能呈先增加后减小的变化趋势;减小胡麻滚动摩擦系数,其转动动能增加。通过设计的异型窝眼轮排种仿真和大田试验可知,胡麻平均穴粒数为9.5粒,标准差为1.5粒;大田试验的平均穴粒数为9粒,标准差为1粒。仿真和试验结果的穴粒数平均值的相对误差为5.26%,基本满足西北旱区胡麻播种机械设计参数优化需求。

       

      Abstract: In order to optimize the mechanized production equipment of flax seeds by means of discrete element method to provide the basic parameters of flax seeds, the basic physical parameters and partial contact mechanical parameters of flax seeds were determined by the experimental method for 3 kinds of flax seeds, Dingya 22, Longya 10 and Longya 13, which are widely planted in Gansu Province of China. The basic physical parameters include three directions of size, mass density, bulk density, Poisson's ratio, 1,000-kernel weight, seed moisture content, and elastic modulus of flax seeds. Three kinds of flax seeds were randomly selected from 500 flax seeds, and the triaxial size of the flax was measured by Vernier calipers. The statistical results showed that the long average of Dingya 22 was 4.83 mm, the width was 2.39 mm, and the thickness was 0.85 mm. The average length was 4.43 mm, the width was 2.38 mm, and the thickness was 0.95 mm. The average length of Longya 13 was 5.13 mm, the width was 2.47 mm, and the thickness was 1.02 mm. The volume of the flax seed was calculated by the 3-axis size. Distribution of 3-dimensional volume of 3 kinds of flax seeds were basically normal distribution. With the pressure deformation experiment of flax seeds was carried out by electric double column tension test bench, and the Poisson's ratio was calculated by measuring the deformation amount of width and thickness before and after loading flax seeds, and Poisson's ratio of flax seed was 0.403, 0.410 and 0.409, respectively. The coefficient of static friction of flax seed was measured by the bevel method, and the coefficient of static friction between flax seeds were 0.240, 0.201 and 0.204, respectively. The collision recovery coefficient between flax seeds was determined by free fall experiment, and the collision recovery coefficient was 0.433, 0.389, 0.430, respectively. The elastic modulus of the load-displacement curve of the flax seeds obtained by the flax pressure experiment was 370.16, 558.28, 370.18 MPa. By the simulation repose angle of flax models under the different coefficient of rolling friction of flax seeds that were put to the actual repose angle of flax seeds, the coefficient of rolling friction of flax seeds was predicted, and the result was that the coefficient of rolling friction of flax seeds was 0.0415, 0.0425 and 0.042 0 for Dingya 22, Longya 10, and Longya 13, respectively. The influence of the coefficient of rolling friction on the repose process of flax seeds was analyzed. With the decrease of the coefficient of rolling friction, the contact quantity of flax seeds and bottom plate increased. The rotational kinetic energy of flax seed population increased first, and then decreased during the accumulation process. At the same time point, the coefficient of rolling friction of flax seeds decreased and the rotational kinetic energy increased. Based on the calibration parameters of flax seeds, the arrangement of heterosexous hole seeding device with flax seeds was carried out. The simulation results showed that the number of granules was 8-11, the average number of granules was 9.5, and the standard deviation was 0.5. Through the field trial experiment of flax combined planter, the number of seeds in the hole of the 81 hole in the collection area was counted. The results showed that the number of seeds in the first, second and third rows of seedlings fluctuated between 8 and 12, with an average of 9, standard deviation of 1. The average value of the simulated and experimental granules was 0.5, and the relative error was 5.26%. The flax seeds were small, and the number of leaks in the process of flax mining statistics occurred, resulting in certain errors in the experiment and simulation results. The flax simulation parameters calibrated in this paper have certain significance in guiding optimizing the seeding working parameters of the flax seeder.

       

    /

    返回文章
    返回