宋修超, 罗佳, 马艳, 刘新红, 周金燕, 严少华. 加热消毒设备处理西瓜重茬基质工艺优化及栽培效果[J]. 农业工程学报, 2019, 35(11): 167-174. DOI: 10.11975/j.issn.1002-6819.2019.11.019
    引用本文: 宋修超, 罗佳, 马艳, 刘新红, 周金燕, 严少华. 加热消毒设备处理西瓜重茬基质工艺优化及栽培效果[J]. 农业工程学报, 2019, 35(11): 167-174. DOI: 10.11975/j.issn.1002-6819.2019.11.019
    Song Xiuchao, Luo Jia, Ma Yan, Liu Xinhong, Zhou Jinyan, Yan Shaohua. Parameter optimization of heating disinfection machine handling watermelon continuous cultivation substrate and cultivation effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 167-174. DOI: 10.11975/j.issn.1002-6819.2019.11.019
    Citation: Song Xiuchao, Luo Jia, Ma Yan, Liu Xinhong, Zhou Jinyan, Yan Shaohua. Parameter optimization of heating disinfection machine handling watermelon continuous cultivation substrate and cultivation effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 167-174. DOI: 10.11975/j.issn.1002-6819.2019.11.019

    加热消毒设备处理西瓜重茬基质工艺优化及栽培效果

    Parameter optimization of heating disinfection machine handling watermelon continuous cultivation substrate and cultivation effect

    • 摘要: 为解决西瓜重茬基质再生利用障碍问题,降低基质栽培经济成本,该研究设计研发了一台利用导热油夹套加热,高温消毒处理重茬基质的设备。从节能和病原菌杀灭的角度,优化该设备的运行参数,获得重茬基质消毒技术。通过对再生基质栽培后西瓜枯萎病发病情况和尖孢镰刀菌数量的调查,验证该技术在田间尺度上的应用效果。试验结果表明:西瓜基质栽培前后容重和孔隙度变化显著,全氮、速效氮、速效钾显著(P<0.05)下降33.0%、40.3%和33.5%,但仍在适宜栽培范围,再次利用需补充养分,而病原菌(尖孢镰刀菌的数量)显著增加是限制重茬基质再利用的主要障碍因子。利用该消毒设备对西瓜重茬基质消毒的最佳运行参数为:单次进料量为3 m3,基质含水率为40%,高温(70 ℃)消毒2.0~2.5 h。田间验证试验显示,连茬种植西瓜后,经消毒处理的重茬基质枯萎病发病率与新基质无差异,分析基质中病原菌数量发现,经过高温处理后重茬基质中尖孢镰刀菌数量与新基质处理无差异,均显著低于未经消毒处理。此外,西瓜采收后的生长指标(植株干质量、单果质量和产量)均与新基质无差异。因此,基于导热油外加热的消毒设备处理西瓜重茬基质工艺达到了很好的灭菌效果,满足西瓜生产需求。整个工艺的经济成本为42.25~53.50元/m3,可以控制在新基质价格的6%以内。在农业生产中具有很好的应用前景。

       

      Abstract: In china, vegetable acreage was increasing year by year, and the problems of soil nutrient out of balance, soil acidification and salinization were becoming more and more prominent. Soilless substrate cultivation has unique advantages in relieving the increasingly tense land resources, preventing the rapid degradation of soil and ensuring the quality and safety of agricultural products. However, in order to reduce the cost of substrate, the technology of cyclic utilization of cultivation substrate is necessary. Common technologies include chemical disinfection, solar disinfection and steam disinfection, but there are some unsolved vulnerabilities of incomplete killing of pathogenic bacteria due to heat uneven transfer. In order to resolve this problem, a kind of disinfection machine was designed. This machine could disinfect continuous cultivation substrate by means of the jacket heating with heat transfer oil. The maximum volume of this machine was 5000 L, and it realized automatic feeding, automatic mixing, automatic controlling temperature and automatic discharging. In this paper, we studied the main obstacle factors for the utilization of watermelon continuous cultivation substrate, and carried out correlative operating parameter (e.g. total tray capacity, moisture content, disinfection method and time) optimization for this equipment and verify the result of cultivation with disinfected substrate in the field. At the same time, we calculated the economic cost and put forward the promotion suggestions. Results indicated that physical and chemical properties of substrate changed significantly after cultivation of watermelon, and the bulk density increased while the porosity decreased significantly (P<0.05). The total nitrogen content, available nitrogen and available potassium decreased by 33.0%, 40.3% and 33.5%, respectively. All the physical and chemical properties of substrate still met the reuse requirement for watermelon cultivation. The pathogenic bacteria population explosion (the population of Fusarium oxysporum changed from 0 to 5.3 ×103 cfu/g) was the main obstacle factor for reusing this substrate. Based on this machine, the optimum disinfection operating parameter of watermelon continuous cultivation substrate were as follows: Input quantity was 3 m³ and substrate water content was about 40%, disinfecting time was 2-2.5 hours at high temperature of 70 ℃. And based on the above parameters, the economic costs were controlled at 42.25-53.50 RMB/m3 with this equipment, which was below 6% of the cost of the new substrate. Field experimental results showed that no watermelon fusarium wilt broke out in disinfected substrate treatment, because the population of Fusarium oxysporum had no significant increase as compared to control. Meanwhile, there was no significant difference in watermelon growth parameters (e.g. plant height, stem diameter in middle stage of watermelon growth, plant dry weight, single fruit weight, and plot yield after harvest) between the new substrate and disinfected substrate. Therefore, this machine met the requirements of disinfection continuous cultivation substrate which could be applied well to actual agricultural production. Of course, considering the cost of this equipment, the best promotion mode should be through substrate marketing enterprises, who could conduct business plate of continuous cultivation substrate disinfection or trade in allowance.

       

    /

    返回文章
    返回