彭顺正, 坎杂, 李景彬. 矮化密植枣园收获作业视觉导航路径提取[J]. 农业工程学报, 2017, 33(9): 45-52. DOI: 10.11975/j.issn.1002-6819.2017.09.006
    引用本文: 彭顺正, 坎杂, 李景彬. 矮化密植枣园收获作业视觉导航路径提取[J]. 农业工程学报, 2017, 33(9): 45-52. DOI: 10.11975/j.issn.1002-6819.2017.09.006
    Peng Shunzheng, Kan Za, Li Jingbin. Extraction of visual navigation directrix for harvesting operation in short-stalked and close-planting jujube orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 45-52. DOI: 10.11975/j.issn.1002-6819.2017.09.006
    Citation: Peng Shunzheng, Kan Za, Li Jingbin. Extraction of visual navigation directrix for harvesting operation in short-stalked and close-planting jujube orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 45-52. DOI: 10.11975/j.issn.1002-6819.2017.09.006

    矮化密植枣园收获作业视觉导航路径提取

    Extraction of visual navigation directrix for harvesting operation in short-stalked and close-planting jujube orchard

    • 摘要: 针对矮化密植枣园环境的复杂性,提出一种基于图像处理的枣园导航基准线生成算法。选用B分量图进行处理,提出"行阈值分割"方法分割树干与背景;根据拍摄场景及视角提出"行间区域"方法剔除行间噪声;通过统计树干与地面交点位置分布区域选取图像五分之二向下区域进行处理;依据树干纵向灰度分布规律,采用浮动窗口灰度垂直投影方法结合形态学开闭运算提取树干区域;基于枣园行间线性分布特征引入"趋势线",而后利用点到直线的距离与设定阈值作比较选取树干与地面的交点;利用交点的位置分布将其归类,并采用最小二乘法原理拟合左右两侧边缘,提取边缘线上各行的几何中心点生成枣园导航基准线。通过对阴天、晴天、顺光、逆光、噪声多元叠加5种条件进行试验,结果表明,该算法具有一定的抗噪性能,单一工况条件导航基准线生成准确率可达83.4%以上,多工况条件准确率为45%。针对5种工况条件的视频检测,结果表明,单一工况条件算法动态检测准确率可达81.3%以上,每帧图像处理平均耗时低于1.7 s,多工况条件检测准确率为42.3%,每帧图像平均耗时1.0 s。该研究可为矮化密植果园实现机器人自主导航作业提供参考。

       

      Abstract: Abstract: An algorithm based on image processing technology was proposed for generating navigation directrix in complex circumstance of short-stalked and close-planting jujube orchard. The hatching method was used to analyze the distribution of target pixels and then proper processing image was obtained. Tree trunk and background were segmented based on B component of image which was binarized by threshold of each scan line. By analyzing the distribution of crossing points between tree truck and ground, the chief processing section, or the region of interest (ROI), was defined and chosen from two-fifths of image area below. Then in the light of trunk longitudinal gray scale distribution, tree trunks location was extracted with gray scale vertical projection method and morphology principle by setting a superficial window to dynamically scan ROI. In order to describe line trend in short-stalked and close-planting jujube orchard, trend lines were introduced, which included the right one and the left one in terms of ridge and furrow. To describe linear distribution trait of ridge and furrow, crossing points between tree and ground were obtained by comparing the shortest distance of candidate point to its corresponding trend line with a man-made threshold value. Afterwards, those selected points were classified separately into 2 clusters in terms of their distribution region which was located at right or left part of image longitudinal symmetry axis, with the point set available to fit the border line of ridge separately. The least square method was used for detecting the right and left border lines, and navigation directrix was generated by extracting the center points between 2 border lines. The method of extracting navigation path was searched by analyzing the condition of short-stalked and close-planting jujube orchard under harvesting operation, and the accuracy and reliability of the algorithm were analyzed and evaluated under a variety of environmental conditions. The study of the algorithm was still in the simulation stage and the specific navigation effect of the algorithm was related to the actual navigation operations, so algorithm performance could not fully represent the actual navigation applications. In order to measure the algorithm reliability and real-time parameters, 5 different scene conditions, which included 4 single factor working conditions and one multiple factor working condition, were tested. The experimental results showed that the algorithm could generate navigation directrix accurately and showed a good noise robustness. Under 4 single factor working conditions, the accuracy was more than 81.3%, and the average processing time consumed was less than 11.9 s to each frame image; by video detection, the accuracy was more than 83.4%, and the average processing time consumed was less than 1.7 s to each frame image. Under multiple factor working condition, the accuracy only reached 45% and the average processing time consumed was 9.4 s; by video detection, the accuracy only reached 42.3% and the average processing time consumed was 1.0 s. Therefore, for subsequent tasks, work should be done to improve the real time performance and practicality of the algorithm for various surroundings, so as to enhance the sensitivity of the algorithm under the multi-mode condition. The novelty of this paper is to propose several new methods to solve practical problems. The research provides a reference for autonomous navigation of robot in short-stalked and close-planting jujube orchard.

       

    /

    返回文章
    返回