刘姣娣, 曹卫彬, 许洪振, 田东洋, 焦灏博, 欧阳异能. 自动补苗装置精准定位自适应模糊PID控制[J]. 农业工程学报, 2017, 33(9): 37-44. DOI: 10.11975/j.issn.1002-6819.2017.09.005
    引用本文: 刘姣娣, 曹卫彬, 许洪振, 田东洋, 焦灏博, 欧阳异能. 自动补苗装置精准定位自适应模糊PID控制[J]. 农业工程学报, 2017, 33(9): 37-44. DOI: 10.11975/j.issn.1002-6819.2017.09.005
    Liu Jiaodi, Cao Weibin, Xu Hongzhen, Tian Dongyang, Jiao Haobo, Ouyang Yineng. Adaptive fuzzy-PID control of accurate orientation for auto-detect seedling supply device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 37-44. DOI: 10.11975/j.issn.1002-6819.2017.09.005
    Citation: Liu Jiaodi, Cao Weibin, Xu Hongzhen, Tian Dongyang, Jiao Haobo, Ouyang Yineng. Adaptive fuzzy-PID control of accurate orientation for auto-detect seedling supply device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 37-44. DOI: 10.11975/j.issn.1002-6819.2017.09.005

    自动补苗装置精准定位自适应模糊PID控制

    Adaptive fuzzy-PID control of accurate orientation for auto-detect seedling supply device

    • 摘要: 为实现补苗装置精准定位控制,解决自动移栽作业过程中因穴盘缺苗和取苗投苗失败而导致的漏栽问题,采用自适应Fuzzy-PID 控制算法来实现钵苗输送的步进定位控制。构建了步进电机角速度控制传递函数的数学模型,设计了自适应 Fuzzy-PID控制器及其模糊规则,通过MATLAB的Simulink模块建立了基于模糊PID控制器的步进电机系统角速度控制模型,以阶跃信号作为激励信号,自适应模糊PID控制和PID控制的仿真试验表明:PID控制的响应时间为7 s,出现超调量为0.1的振荡,通过调整PID控制器参数增大比例系数,系统响应时间缩短为2.2 s,系统响应速度明显加快,且未出现振荡环节;自适应模糊 PID 的响应时间为 0.12 s,步进电机系统快速到达阶跃响应的稳态值,步进电机角速度控制稳定,角速度响应快,满足钵苗输送的定位要求。自动补苗试验结果表明:在植苗频率为40、50与60株/min时,补苗成功率分别为100%,100%、95.8%,且只要光纤传感器检测到漏苗信号,基于自适应Fuzzy-PID控制的步进电机系统快速响应,补苗控制系统都能准确及时地进行自动补苗。该研究可为解决自动移栽机田间作业的漏栽问题提供参考。

       

      Abstract: Abstract: There is more serious seedling leakage phenomenon for duckbill-type automatic transplanter. When the seedlings in plug tray are lacked or the picking seedling machinery fails to pick seedling or the trajectory is inaccurate, throwing seedling to duckbill planter will cause cavity phenomenon on the surface of soil. Current research has focused on seedlings detection out of plug tray, aiming to provide guidelines in picking seedling mechanism's work regularity. However, it cannot resolve the problems that picking seedling needle clamp fails to grip seedlings into duckbill planter, which leads to seedling trajectory deviation. In this paper, a new auto-detect seedlings device suitable for automatic transplanting machine was designed in order to solve the problems above. Seedling positioning detection control system was analyzed and studied systematically. Different from general control system of transplanting machine, which was commonly simple closed-loop control, a method was developed, which adopted the self-adaptation fuzzy-PID (proportion, integral, derivative) control algorithm. It could control stepping motor angle speed firmly, improve response speed to angle speed, and control seedlings positioning accurately on automatic detection system. The mathematical model of the stepping motor velocity control transfer function was developed, and the adaptive fuzzy-PID controller and the fuzzy rules were designed. The mathematical model of angular speed control of stepping motor was established through MATLAB Simulink module based on fuzzy-PID controller of stepper motor system. The control model took step signal as excitation signal, and the adaptive fuzzy-PID control and PID control simulation experiments showed that when the system exerted incentive through step signal, the response time of PID control was 7 s, the system response was slow, and the shock with a super adjustable volume of 0.1 appeared. Through adjusting PID controller parameter and increasing proportion coefficient, the system response time was shortened to 2.2 s, the system response speed obviously sped up, and the shock did not appear. But, PID controller parameter adjustment was offline, and the system load mutation or tough working environment for seedlings detection system would be prone to all kinds of interference. And it may not quickly be adjusted to the steady state values to fill the gaps with seedlings detection system. Response time of adapted fuzzy-PID was 0.12 s and the stepping motor system quickly reached the steady-state value of the step response. It showed that the angular velocity control of stepping motor was stable and the angle change was fast, which could meet the positioning requirements of seedlings conveying. When the auto-detect seedlings device load mutated or the expected value of stepping motor speed changed, the stepping motor could fast response, and the seedlings could fill the gaps timely and be planted normally, at the same time the seedling which will fill the gap will be conveyed to the required position. The experiment result of automatically filling the gaps with seedlings showed that the actual seeding frequency of 2ZXM-2 automatic membrane transplanting machine was 40-60 seedlings/min. When seeding frequency was more than 60 seedlings/min, there existed matching error between seedlings manipulator and plant duckbill. It could increase the leakage rate of seedlings. When the frequency was lower than 40 seedlings/min, the planting efficiency was low and at the same time it could make planting distance of transplanting seedling larger. The seeding frequency was 40, 50 and 60 seedlings/min in test, and the success rate of filling the gaps with seedlings was 100%, 100%, and 95.8%, respectively. As long as the optical fiber sensor detected slight signal, the stepping motor responded quickly based on adaptive fuzzy-PID control system, and the control system of filling the gaps with seedlings could automatically fill the gaps with seedlings accurately and timely. This provides a new method to solve the problem of seedlings leakage of automatic transplanting machine in field.

       

    /

    返回文章
    返回