董勤各, 许迪, 章少辉, 白美健, 李益农. 考虑灌溉参数空间变异的区域畦灌模拟与验证[J]. 农业工程学报, 2017, 33(9): 1-9. DOI: 10.11975/j.issn.1002-6819.2017.09.001
    引用本文: 董勤各, 许迪, 章少辉, 白美健, 李益农. 考虑灌溉参数空间变异的区域畦灌模拟与验证[J]. 农业工程学报, 2017, 33(9): 1-9. DOI: 10.11975/j.issn.1002-6819.2017.09.001
    Dong Qin'ge, Xu Di, Zhang Shaohui, Bai Meijian, Li Yinong. Simulation and validation for regional border irrigation considering spatial variability of irrigation parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 1-9. DOI: 10.11975/j.issn.1002-6819.2017.09.001
    Citation: Dong Qin'ge, Xu Di, Zhang Shaohui, Bai Meijian, Li Yinong. Simulation and validation for regional border irrigation considering spatial variability of irrigation parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 1-9. DOI: 10.11975/j.issn.1002-6819.2017.09.001

    考虑灌溉参数空间变异的区域畦灌模拟与验证

    Simulation and validation for regional border irrigation considering spatial variability of irrigation parameters

    • 摘要: 精确评估区域畦田灌水质量有助于提高农田灌水管理水平,而具有空间变异性的灌溉参数如何有效表征是影响区域畦田灌水质量精确模拟评价的关键因素。为此,该研究的目的在于借助Monte-Carlo抽样,建立考虑畦灌参数空间变异性的区域畦灌模拟方法。采用Monte-Carlo抽样将具有空间变异性的区域灌溉参数(如入畦单宽流量、土壤砂粒含量、黏粒含量、土壤容重等)离散表征为若干个灌溉参数样本,依次输入田块尺度畦灌地表水流-土壤水动力学耦合模型,以模拟评价区域畦灌过程。基于3次区域畦灌试验的实测数据和1个对比的确定性畦灌模拟方法,验证建立的模型的模拟效果。结果表明,所建模拟方法与确定性模拟方法模拟计算的灌水效率和灌水均匀具一定差异,所建模型的模拟值与实测值间的灌溉定额和田间水利用系数相对误差分别为9.95%~12.23%和8.39%~10.21%,而基于现有模型的相对误差则分别为14.15%~16.78%和13.87%~15.88%,畦田平均土壤含水率实测值与所建模型模拟值的累积分布趋势表现出良好的一致性。上述指标表明所建模拟方法有效缩小了区域灌溉参数空间均化处理所带来的模拟误差范围较大等问题,为区域畦田灌溉优化设计和管理提供了技术支撑。

       

      Abstract: Abstract: The performance evaluation of regional scale border irrigation plays an important role in the improvement of surface irrigation management level, but the existing models present the shortcomings such as less accurately capturing the spatial variability of regional scale irrigation parameters. So the exiting models cannot be effectively applied to analyze the performance of regional scale border irrigation system. To solve this problem, the border surface-subsurface flow model was applied to describe the surface and subsurface water flow. The conservative complete hydrodynamic equation and the Richards equation were applied to describe the surface water flow and subsurface water flow in border irrigation, respectively. The finite-volume approach was applied to spatially discretize these governing equations to obtain good mass conservation ability. The Picard iteration approach was introduced to obtain the linearization of this nonlinear algebraic system. The mass conservation component of surface flow model and subsurface flow model were iteratively coupled at the same time step to obtain the convergence value of surface flow depth, and then the momentum conservation component of surface flow model was externally coupled based on the convergence value of both the surface flow depth and infiltration rate to update the surface flow velocity. Solutions were numerically computed using an improved hybrid numerical method for surface flow model and a proposed numerical solution method with high-order accuracy for subsurface flow model. Monte-Carlo sampling method was used to accurately capture the spatial variability of regional scale irrigation parameters and generate a large number of border irrigation parameters samples, which were input to border surface-subsurface model, respectively. Consequently, the border surface-subsurface water flow processes of regional scale could be accurately simulated. Three times border irrigation experiments at regional scale were performed to validate the proposed model in Mawan Irrigation District, located in Dongying City, Shandong Province. Soil samples were collected at 4 depths from the top, middle, and bottom of the border field to analyze soil bulk density, soil particle size distribution, and soil moisture. The soil hydraulic parameters were transformed from the abovementioned soil properties using the Rosetta model. The relative elevation values of the border bottom were observed using a water level gauge. The surface flow depth was measured using water depth measuring devices, which were placed at every observation point before the irrigation was initiated. The surface flow depth was used to estimate Manning's roughness coefficient. And unit discharge, border length, and border width were observed in March 2012, November 2012, and March 2013. The validation results showed that the proposed model could well simulate regional scale border irrigation processes, and presented very good modeling accuracy. Specifically, the relative errors between the measured and simulated values by the proposed stochastic parameter irrigation model were 9.95%-12.23% and 8.39%-10.21% for irrigation quota and field water utilization coefficient, respectively. By contrast, the relative errors of irrigation quota and field water utilization coefficient based on the existing deterministic parameter irrigation models were 14.15%-16.78% and 13.87%-15.88%, respectively. Additionally, the cumulative probability distribution trends of average soil moisture after irrigation between the measured and simulated values present the satisfactory performance. Thus, the proposed model overcomes the shortcomings of existing models and provides a useful numerical analysis tool for the management and design of regional scale border irrigation system.

       

    /

    返回文章
    返回