李福强, 刘守荣, 毛恩荣, 杜岳峰, 林玉龙, 田纪云. 基于功率密度的玉米收获机车架疲劳分析[J]. 农业工程学报, 2016, 32(10): 34-40. DOI: 10.11975/j.issn.1002-6819.2016.10.005
    引用本文: 李福强, 刘守荣, 毛恩荣, 杜岳峰, 林玉龙, 田纪云. 基于功率密度的玉米收获机车架疲劳分析[J]. 农业工程学报, 2016, 32(10): 34-40. DOI: 10.11975/j.issn.1002-6819.2016.10.005
    Li Fuqiang, Liu Shourong, Mao Enrong, Du Yuefeng, Lin Yulong, Tian Jiyun. Fatigue analysis of corn harvester frame based on power density[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 34-40. DOI: 10.11975/j.issn.1002-6819.2016.10.005
    Citation: Li Fuqiang, Liu Shourong, Mao Enrong, Du Yuefeng, Lin Yulong, Tian Jiyun. Fatigue analysis of corn harvester frame based on power density[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 34-40. DOI: 10.11975/j.issn.1002-6819.2016.10.005

    基于功率密度的玉米收获机车架疲劳分析

    Fatigue analysis of corn harvester frame based on power density

    • 摘要: 为从理论上深入探讨载荷频率对疲劳寿命的影响,引入功率密度的概念,并基于功率密度和时频分析提出一种疲劳寿命预测方法,在疲劳分析过程中可同时考虑应力幅值和频率2个因素对疲劳寿命的影响。以某型号自走式玉米收获机为研究对象,在调研数据和有限元分析的基础上,确定车架上危险点位置,设计并实施了应变信号采集试验方案,对收获机各工况下车架危险位置的动态应变进行采集,获得各测点在不同工况下的载荷-时间历程。在实测载荷基础上,利用基于功率密度的疲劳分析方法对玉米收获机车架的疲劳寿命进行预测,得到危险点的疲劳寿命为394 h,与名义应力法分析得到的疲劳寿命(845 h)相比较,更接近实际工作寿命(400~500 h)。该研究为农业装备关键部件的疲劳寿命提供更精确的分析和预测方法,并促进疲劳分析理论的发展。

       

      Abstract: Unlike passenger vehicles, mobile farming units are constantly subjected to shock loads while working in the field. The frame of a corn harvester supports all the essential components including the engine, cab, tanker, and header, etc. Because fatigue performance is critical to the reliability of the entire harvester, it is therefore important to apply an appropriate method to evaluate the corresponding fatigue life. A novel fatigue theory named Power Density was explored in this paper to estimate the fatigue life of the frame with significantly better precision. Power density is a quantitative measure of the stress gradient in time, thus having a physical unit of power per cubic meter volume as in W/m3. The power density of a material can be established using S-N curve. Short-time Fourier transform(STFT) is employed to resolve the frequency content of the input signal which is inherently random in time. The dominant frequency components of the induced stress variation in time along with the corresponding transformation coefficients at a certain time can be extracted in the STFT time-frequency domain. Hamming window was chosen and properly configured to extract the salient features unique to the stress signal acquired. Assuming that the induced stress variation was a time harmonic function, the power density of each frequency can thus be expressed by stress amplitude, frequency and time according to Fourier theory. Using the assumption, the damage rate at a certain time can be determined. The accumulated damage within a time period was then calculated by summing up the damage collected at each time interval. Consequently the fatigue life can be estimated according to the accumulated damage and the time period. An experimental plan was also developed to obtain the stress profiles of the critical points in the harvester frame under the real-world working condition. The critical test points were determined by physical investigation and finite element analysis. Strain gauges were mounted to each test point and subsequently hooked up to a Wheatstone bridge for outputting strain readings in real-time. The output voltage was amplified by a signal amplifier module and acquired by a computer program running on an NI DAQ card. The response rate of the strain gauge was 50 000 Hz. Sampling frequency was then set at 5 000 Hz to ensure no aliasing of the test data would occur. The dynamic stress-time curves of all the test points were stored as voltage signals. Finally, using the test data and the power density theory, the fatigue life of the corn harvester frame was estimated at 394 h, as opposed to 845 h that was obtained by applying the Miner rule. The fatigue life estimate given by the new theory was in close agreement with the real-world operation life of the corn harvester frame which was between 400 and 500 h. In this new approach, we considered both the amplitude and oscillation frequency of the stress variation simultaneously, the fatigue estimate was physically more credible, particularly so when the working conditions involved loading inputs that were nonstationary, broadband, and random. In addition to providing a feasible alternative to all current fatigue theories, the method developed in the paper demonstrated to be applicable to the fatigue analysis of farming equipment.

       

    /

    返回文章
    返回