徐龙琴, 李乾川, 刘双印, 李道亮. 基于集合经验模态分解和人工蜂群算法的工厂化养殖pH值预测[J]. 农业工程学报, 2016, 32(3): 202-209. DOI: 10.11975/j.issn.1002-6819.2016.03.029
    引用本文: 徐龙琴, 李乾川, 刘双印, 李道亮. 基于集合经验模态分解和人工蜂群算法的工厂化养殖pH值预测[J]. 农业工程学报, 2016, 32(3): 202-209. DOI: 10.11975/j.issn.1002-6819.2016.03.029
    Xu Longqin, Li Qianchuan, Liu Shuangyin, Li Daoliang. Prediction of pH value in industrialized aquaculture based on ensemble empirical mode decomposition and improved artificial bee colony algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 202-209. DOI: 10.11975/j.issn.1002-6819.2016.03.029
    Citation: Xu Longqin, Li Qianchuan, Liu Shuangyin, Li Daoliang. Prediction of pH value in industrialized aquaculture based on ensemble empirical mode decomposition and improved artificial bee colony algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 202-209. DOI: 10.11975/j.issn.1002-6819.2016.03.029

    基于集合经验模态分解和人工蜂群算法的工厂化养殖pH值预测

    Prediction of pH value in industrialized aquaculture based on ensemble empirical mode decomposition and improved artificial bee colony algorithm

    • 摘要: 针对单一预测模型预测养殖pH值精度低等问题,提出集合经验模态分解(ensemble empirical mode decomposition,EEMD)和改进人工蜂群算法(improve artificial bee colony,IABC)相结合的南美白对虾工厂化养殖pH值组合预测模型。在建模过程中,利用EEMD算法对原始pH值时间序列进行多尺度分解,得到一组平稳、互不耦合的子序列;根据各子序列变化特征选择适宜的单项预测方法并建模,通过改进人工蜂群(IABC)算法优化复杂非线性组合预测模型目标函数权重系数,构建了工厂化养殖pH值非线性组合预测模型。利用该模型对广东省湛江市2014年9月8日-2014年9月15日期间工厂化养殖pH值进行预测,结果表明,该预测模型取得了较好的预测效果,与模拟退火优化BP神经网络(simulated Annealing-BP neural network,SA-BPNN)和遗传算法优化最小二乘支持向量回归机(genetic algorithm-least square support vector regression,GA-LSSVR)对比分析,模型评价指标平均绝对百分比误差MAPE、均方根误差、平均绝对误差MAE和相关系数R2分别为0.0035、0.0274、0.0224和0.9923,均表明该文提出的组合预测模型具有更高预测精度,能够满足实际南美白对虾工厂化养殖pH值精细化管理需要,也为其他领域pH值预测提供参考。

       

      Abstract: Abstract: The pH value in industrialized cultivation ponds is crucial to the survival of Litopenaeus Vannamei. Grasping the trend of the pH value timely and accurately is the key for the high-density healthy Litopenaeus Vannamei culture. Therefore, in order to solve the low prediction accuracy of the single model in pH value prediction, this paper proposes a pH value combination forecasting model in Litopenaeus Vannamei industrialized cultivation based on ensemble empirical mode decomposition (EEMD) and improved artificial bee colony (IABC) algorithm. In the modeling process, the non-linear time sequences of the original pH value are de-noised and decomposed into a series of stable and uncoupling sequences by the EEMD. Based on the changed characteristics of each sequence, the appropriate forecasting method is selected and a new independent prediction model is established. The independent prediction values are reconstructed to obtain the ultimate prediction results. But whether the weight of the combined forecasting model is appropriate restricts the prediction accuracy and performance seriously. Therefore, we choose the IABC optimized method to seek the optimal weight of the combined forecasting model, which overcomes the blindness and the impact of human factors in parameter selection of the combined forecasting model in order to accelerate its convergence rate and forecast accuracy. The combinations of the best weights are obtained automatically after the optimization, and in the process the nonlinear combination prediction model of pH value in industrialized cultivation is constructed. With this model, the pH value change has been predicted for industrialized cultivation pond from September 8 to September 15 in 2014 in Zhanjiang City, Guangdong Province. The experimental results show that the proposed combination prediction model of EEMD-IABC has better prediction effect than the optimized back propagation neural network based on simulated annealing algorithm (SA-BPNN) and genetic algorithm-least square support vector regression (GA-LSSVR) method. And the relative mean absolute percent error (MAPE), root mean square error (RMSE), mean absolute error (MAE) and determination coefficient (R2) for the pH values between the EEMD-IABC and GA-LSSVR models are 14.6%, 28.6%, 27% and 1.1% respectively under the same experimental conditions. The relative MAPE, RMSE, MAE and R2 for the pH values between the EEMD-IABC and SA-BPNN models are 56.8%, 61.4%, 62.8% and 6.16% respectively. It is obvious that the EEMD-IABC has high forecast accuracy and generalization ability. It can meet the actual demand for the pH value controlling in the Litopenaeus Vannamei industrialized cultivation and also provide a reference for water quality predictions in other fields.

       

    /

    返回文章
    返回