郭依正, 朱伟兴, 马长华, 陈晨. 基于Isomap和支持向量机算法的俯视群养猪个体识别[J]. 农业工程学报, 2016, 32(3): 182-187. DOI: 10.11975/j.issn.1002-6819.2016.03.026
    引用本文: 郭依正, 朱伟兴, 马长华, 陈晨. 基于Isomap和支持向量机算法的俯视群养猪个体识别[J]. 农业工程学报, 2016, 32(3): 182-187. DOI: 10.11975/j.issn.1002-6819.2016.03.026
    Guo Yizheng, Zhu Weixing, Ma Changhua, Chen Chen. Top-view recognition of individual group-housed pig based on Isomap and SVM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 182-187. DOI: 10.11975/j.issn.1002-6819.2016.03.026
    Citation: Guo Yizheng, Zhu Weixing, Ma Changhua, Chen Chen. Top-view recognition of individual group-housed pig based on Isomap and SVM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 182-187. DOI: 10.11975/j.issn.1002-6819.2016.03.026

    基于Isomap和支持向量机算法的俯视群养猪个体识别

    Top-view recognition of individual group-housed pig based on Isomap and SVM

    • 摘要: 针对俯视群养猪视频序列,提出了一种利用机器视觉技术对猪个体进行识别的方法。首先对采集的俯视群养猪视频序列进行前景检测与目标提取,获得各单只猪个体,其后建立训练样本,提取猪个体颜色、纹理及形状特征,组合构建表征猪个体的特征向量,接着对组合特征利用Isomap算法做特征融合,在最大程度保留有效识别信息的基础上降低特征维数,最后利用优化核函数的支持向量机分类器进行训练与识别。试验选取了900帧图像,试验结果表明该文所提方法切实有效,猪个体最高识别率为92.88%。该文从机器视觉角度探索了俯视群养猪的个体识别,有别于传统的RFID猪个体识别,该研究为无应激的猪个体识别提供了新思路,也为进一步探索群养猪个体行为分析等奠定了基础。

       

      Abstract: Abstract: Monitoring behavior of pigs in a pen is possible both in group and at individual level. Data analysis at individual level, however, has more advantages. Identification of pigs is a necessary step towards analyzing the different behaviors of pigs individually. Some current computer vision systems that are used for video surveillance of group-housed pigs require that the pigs be marked. In this paper, using a top-view video sequence of group-housed pigs, a machine-vision technology method for recognizing individual pig is proposed. First, to recognize each individual pig, foreground detection and target extraction are conducted on a top-view video sequence of the group-housed pigs. Second, the training samples are established, and the color, texture and shape of the individual pig are extracted; through the combination of these features, a feature vector representing an individual pig is then built. Third, the combined features are fused using the Isomap algorithm, which reduces the feature dimension on the basis of the maximum retention of the effective recognition information. Finally, the features are trained and recognized using a support vector machine (SVM) classifier with an optimal kernel function. The videos used in the present study are collected from pig farms of the Danyang Rongxin Nongmu Development Company, which is the experimental base for the key discipline of Jiangsu University, i.e. agricultural electrification and automation. The pigs are monitored in a reconstructed experimental pigsty. The pigsty is 1 m high, 3.5 m long and 3 m wide. A camera is located above the pigsty with the height of 3 m over the ground. The camera is the FL3-U3-88S2C-C with an image resolution of 1760 × 1840 pixels from the Grey Point Company. The videos are captured from 8 AM to 5 PM. Over 5 days randomly chosen, we collect 6 sections of videos every day at random time, so there are a total of 30 videos randomly chosen in audio video interleaved (AVI) format. The frame frequency of each video is 25 fps with the duration of approximately 120 s. Among the 90 000 frames (5 days × 6 videos × 120 s × 25 fps), 900 frames satisfying the requirement of experimental conditions are selected. The software MATLAB 2012b is adopted. The experimental results show that the proposed method is effective and the highest recognition rate of pigs is 92.88%. In this paper, a method for recognizing group-housed pigs individually from a top-view video sequence is explored based on the machine vision, which differs from traditional radio frequency identification (RFID) of individual pig. This study provides a new idea for the recognition of individual pig without stressing the animals, and lays a foundation for further analysis of the behavior of individual pig.

       

    /

    返回文章
    返回