王军, 李久生, 关红杰. 北疆膜下滴灌棉花产量及水分生产率对灌水量响应的模拟[J]. 农业工程学报, 2016, 32(3): 62-68. DOI: 10.11975/j.issn.1002-6819.2016.03.010
    引用本文: 王军, 李久生, 关红杰. 北疆膜下滴灌棉花产量及水分生产率对灌水量响应的模拟[J]. 农业工程学报, 2016, 32(3): 62-68. DOI: 10.11975/j.issn.1002-6819.2016.03.010
    Wang Jun, Li Jiusheng, Guan Hongjie. Modeling response of cotton yield and water productivity to irrigation amount under mulched drip irrigation in North Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 62-68. DOI: 10.11975/j.issn.1002-6819.2016.03.010
    Citation: Wang Jun, Li Jiusheng, Guan Hongjie. Modeling response of cotton yield and water productivity to irrigation amount under mulched drip irrigation in North Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 62-68. DOI: 10.11975/j.issn.1002-6819.2016.03.010

    北疆膜下滴灌棉花产量及水分生产率对灌水量响应的模拟

    Modeling response of cotton yield and water productivity to irrigation amount under mulched drip irrigation in North Xinjiang

    • 摘要: 膜下滴灌技术是一种节水高产的灌溉技术,在新疆棉花种植中得到了广泛的应用。灌溉是影响新疆棉花产量的重要因素。为研究棉花产量和水分生产率对灌水量的响应,该文首先采用2010年和2011年新疆棉花膜下滴灌田间试验数据验证二维土壤水与作物生长耦合模型模拟棉花产量和耗水量可靠性。结果表明,二维土壤水与作物生长耦合模型能够可靠地模拟土壤含水率、叶面积指数、地上部分干物质量、籽棉产量和耗水量。土壤含水率模拟值与实测值的标准均方根误差(normalized root mean square error,nRMSE)为4.6%~23.4%,一致性指数为0.677~0.974;叶面积指数和地上部分干物质量nRMSE分别为6.3%~15.7%和7.2%~14.1%;籽棉产量和耗水量的模拟值与实测值之间相对误差分别仅为1.1%~6.7%和0.3%~9.2%。利用率定和验证后的模型参数进一步模拟10种灌水量情景下的棉花籽棉产量和水分生产率,结果表明籽棉产量随着灌水量的增加而增加,二者呈抛物线关系,而水分生产率则随着灌水量的增加而减小。综合考虑产量和水分生产率,北疆地区膜下滴灌棉花优化灌水量为280~307 mm。该研究可为北疆地区棉花灌水实践提供科学依据。

       

      Abstract: Abstract: Xinjiang Uygur Autonomous Region is the largest cotton-production area of China. As a water saving and high yield irrigation technique, mulched drip irrigation is popular water application method for cotton production in Xinjiang Uygur Autonomous Region. Studying the response of cotton yield to irrigation amount is of great importance. In this study, a two-dimensional soil water transport and crop growth coupled model was calibrated and validated using field data of cotton under mulched drip irrigation, and then used to estimate the cotton yield under different irrigation amount. The field experiment was conducted at the experimental station located in Urumqi, Xinjiang Uygur Autonomous Region, China, during the cotton growing seasons of 2010 and 2011. In this experiment, 3 irrigation levels of 50%, 75% and 100% of full irrigation were adopted. For the full irrigation treatment, irrigation was applied when the averaged soil moisture within the root zone (40 cm for the squaring stage and 60 cm for the bloom stage) was depleted to 60% and 70% of the field capacity for the squaring and bloom stages, respectively. The irrigation was applied until the soil water content reached to 85 % and 95% of the field capacity for the squaring and bloom stage, respectively. Soil water content was measured weekly by a Trime-FM probe to 100 cm depth to determine irrigation schedule. Leaf area index and aboveground biomass of cotton plant were observed at squaring, bloom, and boll-forming stages. At the end of each growing season, the seed cotton was harvested by hand. Considering the features of water transport from emitters into soil, a process-based two-dimensional soil water transport and crop growth simulation tools would be preferred to modeling the response of crop yield to irrigation amount under mulched drip irrigation. The coupled model was coded in program subroutines and functions integrated with CHAIN_2D and the crop growth model of EPIC. This model was written in FORTRAN 90 for Windows system. In the coupled model, the root water uptake model of Vrugt was coupled with the root depth growth model in order to consider the interaction between root water uptake and crop growth. To study the response of cotton yield and water productivity to irrigation amount, the two-dimensional soil water transport and crop growth coupled model was calibrated and validated by soil water content dynamic, crop growth indexes and seed cotton yield obtained from the field experiments. The calibration and validation results indicated that the coupled model performed well in predicting the soil moisture, above ground biomass, seed cotton yield and total water use. The values of normalized root mean square error (nRMSE) and index of agreement between observed and simulated soil water contents was 4.6%-23.4%, and 0.677-0.974, respectively. The nRMSE values of leaf area index and aboveground biomass was 6.3%-15.7% and 7.2%-14.1%, respectively. The differences between simulated and measured seed cotton yields and water uses were ranged from 1.1% to 6.7% and from 0.3% to 9.2%, respectively. Furthermore, the calibrated two-dimensional soil water transport and crop growth coupled model was used to simulate seed cotton yield and water productivity under 10 irrigation scenarios, i.e. 40%-130% of full irrigation amount with the increment of 10%. The results showed that the seed cotton yield and water productivity were increased and decreased through quadratic functions as the irrigation amount increased, respectively. Therefore, this study suggested that the appropriate mulched drip irrigation amounts for cotton in the North Xinjiang region ranges from 280 to 307 mm considering the yield and water productivity.

       

    /

    返回文章
    返回