首页 | 简介 | 作者 | 编者 | 读者 | Ei(光盘版)收录本刊数据 | 网络预印版 | 点击排行前100篇 | English
肖 武,李小昱,李培武,雷廷武,王 为,刘 洁,冯耀泽.基于近红外光谱土壤水分检测模型的适应性[J].农业工程学报,2009,25(3):33-36.DOI:
基于近红外光谱土壤水分检测模型的适应性
投稿时间:2008-02-19  修订日期:2008-12-26
中文关键词:  近红外光谱,土壤水分,主成分析,模型适应性
基金项目:黄土高原土壤侵蚀与旱地农业国家重点实验室基金(10501-166)
作者单位
肖 武 1. 华中农业大学工程技术学院武汉 430070 
李小昱 1.华中农业大学工程技术学院武汉 430070 2.中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室杨凌 712100 
李培武 3. 中国农业科学院武汉油料作物研究所武汉 430062 
雷廷武 2.中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室杨凌 7121004.中国农业大学水利与土木工程学院北京 100083 
王 为 1. 华中农业大学工程技术学院武汉 430070 
刘 洁 1. 华中农业大学工程技术学院武汉 430070 
冯耀泽 1. 华中农业大学工程技术学院武汉 430070 
摘要点击次数: 12704
全文下载次数: 3053
中文摘要:由于土壤水分的近红外光谱定量分析模型精度依赖于样品状态,故土壤水分定量分析模型的适应性极其重要。以湖北地区的3种土壤为研究对象,利用偏最小二乘法交叉验证建立了处理后样品下的土壤水分分析模型,模型预测值与标准值的决定系数R2为0.9946,交叉验证预测均方差为0.801%,模型预测决定系数R2为0.9919,预测均方差为0.912%;利用主成分分析了未处理土壤样品与处理土壤样品得分图的差异,结果表明定量分析模型对未处理样品的预测精度降低;采用斜率/截距的方法修正了12个未处理样品的模型预测值,预测平均绝对值误差从0.78%降低到0.38%,结果表明斜率/截距校正法能较好的提高近红外光谱土壤水分定量分析模型的适应性。
Xiao Wu,Li Xiaoyu,Li Peiwu,Lei Tingwu,Wang Wei,Liu Jie,Feng Yaoze.Adaptability of the model for soil moisture measurement based on near-infrared spectroscopy[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2009,25(3):33-36.DOI:
Adaptability of the model for soil moisture measurement based on near-infrared spectroscopy
Author NameAffiliation
Xiao Wu 1. College of Engineering and Technology, Huazhong Agricultural University, Wuhan 430070, China 
Li Xiaoyu 1. College of Engineering and Technology, Huazhong Agricultural University, Wuhan 430070, China
2. Institute of S oil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China 
Li Peiwu 3. China Agricultural Science Research Institute, Wuhan 430070, China 
Lei Tingwu 2. Institute of S oil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
4. College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, China 
Wang Wei 1. College of Engineering and Technology, Huazhong Agricultural University, Wuhan 430070, China 
Liu Jie 1. College of Engineering and Technology, Huazhong Agricultural University, Wuhan 430070, China 
Feng Yaoze 1. College of Engineering and Technology, Huazhong Agricultural University, Wuhan 430070, China 
Key words:near infrared spectroscopy, soil moisture, principal component analysis, model adaptability
Abstract:The precision of the soil moisture measurement using near-infrared spectral quantitative analysis model relies on the sample condition, so the model adaptability is extremely important. Three kinds of Hubei area soil were researched, and partial least square (PLS) and cross calibration method were employed to establish soil moisture analysis model. The results indicate that the decision coefficient R2 between predicted value by model and normal value was 0.9946, and the root mean square error of cross-validation (RMSECV) was 0.801%, the model predicted decision coefficient R2 was 0.9919, the root mean square error of prediction (RMSEP) was 0.912%. Principal component analysis(PCA) method was used to classify the raw soil samples and the processing soil samples. However, the results indicate that the quantitative analysis model has low prediction precision for raw sewage sample. After the slope /bias method was used to revise 12 raw sewage sample values predicted by the model, the average absolute error reduced from 0.78% to 0.38%. The results indicate that the method of slope/bias can enhance the adaptability of the model for near-infrared spectral quantitative analysis of soil moisture.
查看全文   下载PDF阅读器

京ICP备06025802号-3

主办单位:中国农业工程学会 单位地址:北京朝阳区麦子店街41号

服务热线:010-59197076、59197077 传真: 邮编:100125 Email:tcsae@tcsae.org
本系统由北京勤云科技发展有限公司设计

京公网安备 11010502031390号