首页 | 简介 | 作者 | 编者 | 读者 | Ei(光盘版)收录本刊数据 | 网络预印版 | 点击排行前100篇 | English
杨鹏,吴文斌,周清波,陈仲新,查燕,唐华俊,柴崎亮介.基于作物模型与叶面积指数遥感影像同化的区域单产估测研究[J].农业工程学报,2007,23(9):130-136.DOI:
基于作物模型与叶面积指数遥感影像同化的区域单产估测研究
投稿时间:2007-01-19  修订日期:2007-08-12
中文关键词:  遥感  估产  作物生长模型  数据同化  冬小麦  叶面积指数  植被指数
基金项目:国家高技术研究发展计划(863计划)(2006AA12Z103);中央级公益性科研院所专项资金(2007IARRP25)
作者单位
杨鹏 (1975-)湖南冷水江人博士助理研究员主要从事农业遥感及全球变化研究。北京中国农业科学院农业资源与农业区划研究所100081。Email:yangpeng@mail.caas.net.cn 
吴文斌 农业部资源遥感与数字农业重点开放实验室,北京 100081
中国农业科学院农业资源与农业区划研究所北京 100081
日本东京大学空间情报科学研究中心日本东京153-8505 
周清波 博士研究员博士生导师主要从事农业及生态环境遥感研究。北京中国农业科学院农业资源与农业区划研究所100081。Email:zhouqb@mail.caas.net.cn 
陈仲新 农业部资源遥感与数字农业重点开放实验室,北京 100081
中国农业科学院农业资源与农业区划研究所北京 100081 
查燕 中国农业科学院农业资源与农业区划研究所北京 100081 
唐华俊 农业部资源遥感与数字农业重点开放实验室,北京 100081
中国农业科学院农业资源与农业区划研究所北京 100081 
柴崎亮介 日本东京大学空间情报科学研究中心日本东京153-8505 
摘要点击次数: 7726
全文下载次数: 2561
中文摘要:通过对作物光合、呼吸、蒸腾、营养等一系列生理生化过程的定量模拟,作物生长模型已经被成功应用于田间尺度的作物单产研究。为了进一步将作物模型扩展应用于区域尺度,提高区域作物单产的模拟精度,该文探讨了将作物模型与多时相叶面积指数(LAI)遥感影像同化以改善区域单产估测的方法。研究首先通过地理信息系统将美国农业部开发的“考虑气候的作物环境决策模型”——EPIC模型,扩展为空间模型。然后,通过基于Landsat TM影像差值植被指数DVI与田间观测叶面积指数构建的最优回归模型,反演了研究区域的多时相叶面积指数影像。最后通过优化算法实现了空间EPIC模型与影像信息的同化,并将系统应用于河北石家庄地区2004年冬小麦的单产估测。结果表明,通过数据同化校正部分关键参数后的空间作物模型的单产模拟精度得到有效提高,但要达到业务运行精度仍有待进一步改善。
Yang Peng,Wu Wenbin,Zhou Qingbo,Chen Zhongxin,Zha Yan,Tang Huajun,Shibasaki Ryosuke.Assimilating remotely sensed LAI into GIS-based EPIC model for yield assessment on regional scale[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2007,23(9):130-136.DOI:
Assimilating remotely sensed LAI into GIS-based EPIC model for yield assessment on regional scale
Author NameAffiliation
Yang Peng Key Laboratory of Resources Remote Sensing & Digital Agriculture, Ministry of Agriculture, Beijing 100081, China
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Center for Climate 
Wu Wenbin Key Laboratory of Resources Remote Sensing & Digital Agriculture, Ministry of Agriculture, Beijing 100081, China
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Center for Spatial 
Zhou Qingbo Key Laboratory of Resources Remote Sensing & Digital Agriculture, Ministry of Agriculture, Beijing 100081, China
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
Chen Zhongxin Key Laboratory of Resources Remote Sensing & Digital Agriculture, Ministry of Agriculture, Beijing 100081, China
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
Zha Yan Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
Tang Huajun Key Laboratory of Resources Remote Sensing & Digital Agriculture, Ministry of Agriculture, Beijing 100081, China
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
Shibasaki Ryosuke Center for Spatial Information Science, University of Tokyo, Tokyo 153-8505, Japan 
Key words:remote sensing  crop yield assessment  crop growth model  data assimilation  winter wheat  LAI (leaf area index)  vegetation index
Abstract:Many crop growth models have been used successfully for simulating the physiological development, growth, and yield of a crop on field scale. To upscale crop models to large areas and to improve accuracy of yield assessment on regional scale, this article describes the development of a methodology for assimilating remotely sensed LAI into crop growth model. In this study, the Environmental Policy Integrated Climate(EPIC) model from United States Department of Agriculture(USDA) is integrated with Geographical Information System(GIS) by a Loose Coupling Approach, firstly. Then, the empirical Leaf Area Index(LAI) maps, which are retrieved from multi-temporal Landsat TM images by Regression Analysis Procedure, are assimilated with the GIS-based EPIC model by an optimization algorithm and Lookup-Table method. Some key parameters for LAI simulation in EPIC model, such as DMLA(the maximum potential LAI) and DLAI(the fraction of growing season when leaf area started declining), are recalibrated through data assimilation. Finally, the methodology is applied during the 2004 crop season in 28 counties of North China Plain to simulate the yield of winter wheat. The result of yield assessment indicates that the data assimilation has significantly improved the accuracy of yield simulation by the GIS-based crop growth model on regional scale. The correlation coefficients(R2) between statistic yield and simulated yield at county level have been changed from 0.12 to 0.51.
查看全文   下载PDF阅读器

京ICP备06025802号-3

主办单位:中国农业工程学会 单位地址:北京朝阳区麦子店街41号

服务热线:010-59197076、59197077 传真: 邮编:100125 Email:tcsae@tcsae.org
本系统由北京勤云科技发展有限公司设计

京公网安备 11010502031390号