首页 | 简介 | 作者 | 编者 | 读者 | Ei(光盘版)收录本刊数据 | 网络预印版 | 点击排行前100篇 | English
朱晋宇,惠放,李苗,马韫韬,余宏军,蒋卫杰.氮水平对盆栽沙培番茄苗期根系三维构型与氮素利用的影响[J].农业工程学报,2015,31(23):131-137.DOI:10.11975/j.issn.1002-6819.2015.23.017
氮水平对盆栽沙培番茄苗期根系三维构型与氮素利用的影响
投稿时间:2015-08-22  修订日期:2015-11-01
基金项目:863计划(2012AA101906-2);国家自然科学基金项目(31301816,31471920);国家大宗蔬菜产业技术体系(CARS-25-C-09);农业部园艺作物生物学与种质创制重点实验室项目资助。
作者单位
朱晋宇 1. 中国农业科学院蔬菜花卉研究所北京 100081
 
惠放 2. 中国农业大学资源环境学院北京 100193
 
李苗 2. 中国农业大学资源环境学院北京 100193
 
马韫韬 2. 中国农业大学资源环境学院北京 100193
 
余宏军 1. 中国农业科学院蔬菜花卉研究所北京 100081
 
蒋卫杰 1. 中国农业科学院蔬菜花卉研究所北京 100081
 
摘要点击次数: 2422
全文下载次数: 753
中文摘要:为了研究施氮量对番茄苗期根系三维空间分布与氮素吸收利用的影响,以中杂109番茄幼苗为材料,采用沙培盆栽方式并设置3个氮素水平处理,利用15N示踪法和三维数字化仪分别研究幼苗根际氮素吸收运转效率与根系三维构型。结果表明:施氮肥4 mmol/L处理番茄幼苗根系总长、根表面积和根系分支密度分别高于20 mmol/L处理16.5%、17.5%和15.5%;4 mmol/L处理幼苗根系三维构型是半径窄而深度深,20 mmol/L处理根系三维构型是半径宽而深度浅,4 mmol/L根系的平均深度较20 mmol/L处理高30%、但半径宽度较20 mmol/L处理低8%,12 mmol/L处理下幼苗根系半径宽度与深度均匀分布;高氮浓度会提高根系15N吸收率与分配率,各器官15N分配率为叶>茎>根,说明根际氮素转运对叶的贡献率最大;12 mmol/L处理幼苗15N转运量与氮素利用率最高分别为508.3 mg/株和8.9%,20 mmol/L处理较4 mmol/L处理15N转运量高128 mg/株,但是氮素利用率却降低2%。研究表明苗期管理上可以适当降低施氮量,番茄幼苗会主动改变根系三维构型来提高氮素利用效率。
中文关键词:    肥料  栽培  番茄幼苗  根系构型  15N示踪
Zhu Jinyu,Hui Fang,Li Miao,Ma Yuntao,Yu Hongjun,Jiang Weijie.Effect of different nitrogen concentrations on roots architecture and nitrogen use efficiency in potting tomato seedling[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015,31(23):131-137.DOI:10.11975/j.issn.1002-6819.2015.23.017
Effect of different nitrogen concentrations on roots architecture and nitrogen use efficiency in potting tomato seedling
Author NameAffiliation
Zhu Jinyu 1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
Hui Fang 2. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China 
Li Miao 2. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China 
Ma Yuntao 2. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China 
Yu Hongjun 1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
Jiang Weijie 1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China 
Abstract: Rizosphere nutrient regulation for vegetable seedling is the basis to cultivate high quality seedlings. Among them, nitrogen regulation in the rhizosphere is of great importance for the growth and development of tomato seedling. Previous studies on the nitrogen regulation in the rhizosphere were mostly focused on the physiological development of tomato seedlings. The absorption and utilization of nitrogen are closely related to the root system architecture at the seedling stage. Researches have shown that root length density, root depth, root radius related to root architecture parameters can limit uptake, transport and utilization of nitrogen and phosphorus in the root. Furthermore, the interactions of root three-dimensional (3D) architecture with different nitrogen concentrations will affect root nitrogen uptake, transfer and use efficiency. However, these interactions and the responses of the 3D architecture of root system for tomato seedling to different nitrogen levels are not well reported yet. Therefore, the aim of current study was using 15N tracer method and 3D digitizing technology to investigate the efficiency of nitrogen absorption and transfer, and root 3D architecture at seeding stage. A greenhouse experiment of tomato seedling under different nitrogen concentration treatments was conducted by sand cultivation in the Chinese Academy of Agricultural Sciences. Greenhouse temperature was controlled at 25-28℃ for the day and at 15-20℃ for the night. Tomato seeding of 'Zhong Za 109' was used as the study material. After cultured under 3 nitrogen levels, the seedlings were transplanted in the plastic pots (diameter 35 cm, height 10 cm, volume 35 dm3) with quartz sand matrix. The 3 nitrogen levels were 4, 12 and 20 mmol/L (N4, N12 and N20). Hoagland complete nutrient solution was used to water the tomato seedlings with 700 mL per day, according to the requirements of normal growth of tomato seedling. Moisture content within quartz sand remained at about 60%. Nine days after transplanting, isotope test was carried out, in which 15N labeled nutrient solution was used to water the plant and this lasted till 18 days after transplanting. Then, nitrogen nutrient solution without the labeled 15N was continuously used to water the plant till the end of experiment, 30 days after transplanting. Experiments were designed by using randomized block design with totally 120 plants for each treatment and 3 repetitions per treatment. Four plants were sampled for each treatment at each time. Measurements of plant biomass, leaf area and nitrogen content for each organ, and root architecture information were done every 9 days after transplanting. Isotope 15N for each type of organ was measured 18 and 27 days after transplanting respectively. ScanMaker i800 Plus (Microtek) was used to scan the root system with the precision of 400 dpi. The spatial coordinates of the root system were measured with Fastrak (Polhemus, 3Space, USA). The results showed that tomato seedling dry weight, leaf area, root-shoot ratio were significantly affected under different nitrogen treatments. The root total length, root surface area and root branching density under N4 treatment were 16.5%, 17.5% and 15.5% higher than those under N20 treatment. Root architecture under N4 treatment was with narrow radius and deep depth, compared with those under N20 treatment. High nitrogen concentration would promote root 15N uptake and distribution rate. 15N allocation rate sequence was leaf > stem > root, which showed the largest contribution of root nitrogen transfer for leaf. The transfer of 15N and utilization rate of nitrogen fertilizer were the highest for 12 mmol/L treatment, with 508.3 mg transfer per plant and 8.9% nitrogen use efficiency. The transfer of 15N for 20 mmol/L treatment was 128 mg per plant higher than that for 4 mmol/L treatment; however, the utilization rate of nitrogen fertilizer was reduced by 2%. The results indicate that the nitrogen concentrations can be decreased in tomato production, and the tomato seedlings will take the initiative to change the root 3D configurations to improve nitrogen use efficiency.
Key words:nitrogen  fertilizers  cultivation  roots architecture  15N tracer
查看全文   下载PDF阅读器

主办单位:中国农业工程学会 单位地址:北京朝阳区麦子店街41号

服务热线:010-59197076、59197077 传真: 邮编:100125 Email:tcsae@tcsae.org
本系统由北京勤云科技发展有限公司设计

京ICP备06025802号-3