熊本海, 杨振刚, 杨亮, 潘晓花. 中国畜牧业物联网技术应用研究进展[J]. 农业工程学报, 2015, 31(z1): 237-246. DOI: 10.3969/j.issn.1002-6819.2015.z1.028
    引用本文: 熊本海, 杨振刚, 杨亮, 潘晓花. 中国畜牧业物联网技术应用研究进展[J]. 农业工程学报, 2015, 31(z1): 237-246. DOI: 10.3969/j.issn.1002-6819.2015.z1.028
    Xiong Benhai, Yang Zhengang, Yang Liang, Pan Xiaohua. Review on application of Internet of Things technology in animal husbandry in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(z1): 237-246. DOI: 10.3969/j.issn.1002-6819.2015.z1.028
    Citation: Xiong Benhai, Yang Zhengang, Yang Liang, Pan Xiaohua. Review on application of Internet of Things technology in animal husbandry in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(z1): 237-246. DOI: 10.3969/j.issn.1002-6819.2015.z1.028

    中国畜牧业物联网技术应用研究进展

    Review on application of Internet of Things technology in animal husbandry in China

    • 摘要: 以"感知"为基础的物联网技术迅速发展及产业化逐步渗透到各行各业,包括畜牧业在内的农业物联网的发展也十分迅猛。该文重点从家畜编码规范及标识技术,家畜养殖环境及体征行为远程监测,母猪精细饲喂智能装备及种畜(种猪、奶牛)养殖过程数字化监管与云计算平台构建等多个方面,综述物联网技术在畜牧业领域的应用环节、效果及存在的局限性。综述表明,在感知标识层,关于家畜标识的国际标准主要包括动物管理系列标准ISO/TC 23/SC 19,它负责制订动物管理RFID(radio frequency identification)方面标准,包括ISO 11784/11785和ISO 14223标准,但3个标准内涵的分工不同,而中国的标准包括国家规范、地方标准及企业内部规范,具体包括农业部第67号令,上海地方标准(DB31/T341-2005)和新疆地方标准(DB 65/ T3209-2011)2个动物电子标识规范,以及北大荒及亿利源企业的肉牛内部编码规范。在感知传输层,主要基于不同类型的传感器感知家畜舍环境参数(温湿度、光照强度、氨气及CO2浓度等)及体征行为(视频、质量,体表温度等)。在数据传输层,采用无线公网(2G/3G/4G)网络对家畜舍环境数据及个体的行为状态数据实施远程传输,而视频数据及大量的生产过程数据采用有线网络传输到Internet网路数据库;在数据应用层,典型的应用包括通过移动智能手机终端,依据对采集数据的分析及预警,对远程的环境控制设备(风机、灯电暖、水泵等)进行智能开启与关闭;其次是奶牛繁殖场及种猪养殖场云计算平台的开发与数据挖掘分析应用,以及基于传感器技术及机电控制技术的母猪电子自动与精确饲喂设备的开发与应用。最后,该文从微观到宏观剖析了中国畜牧业物联网当前在技术、产品、应用、政策及认识层面存在的不足,并给出相应的技术与政策建议。综合认为,中国畜牧业发展的现代化需要物联网技术的支撑,物联网技术也必须在领域的应用中寻找正能量,促进畜牧业物联网产业的发展。

       

      Abstract: Abstract: The Internet of Things (IoT) technology, based on the perception, is developing rapidly and permeating into every walk of life. IoT of agriculture, including animal husbandry, has been showing a status of rapid development and is urgent in keeping pace with other industries. In this study, livestock coding specification and identification technology, remote monitoring technology of livestock farm environments and animal behaviors, and precise sow feeding equipment and digital network management platform of farms were reviewed to expound the application effects and limitations of IoT in animal husbandry. We found that at the perceptual layer, the international standards for livestock identification mainly included the ISO TC 23/SC 19, which set rules for radio frequency identification (RFID) for livestock management, and it was functionally divided into ISO 11784, ISO 11785 and ISO 14223. The Chinese standards for livestock identification were described in three levels: national standard specifications, local standards, and corporate standards. For example, the three different standards are Ministry of Agriculture Legislation No.67, local standard of identification in Shanghai (DB31/T341-2005), and Xinjiang (DB 65/ T3209-2011), and internal encoding specification of Beidahuang Agriculture Co., Ltd and Yiliyuan Co., Ltd. At the transport layer, the environment parameters of livestock farms like temperature, humidity, illumination intensity, ammonia concentration, and carbon dioxide concentration etc., and animal behavior parameters like body weight and body temperature would be perceived by different sensors and then the data from environment parameters and individual animal behavior data mentioned above would be remotely transferred through a wireless public network (2G/3G/4G). The video data and huge production process data were transferred into internet network databases by wired networks. At the data application layer, the typical application examples were shown below. Firstly, remote monitoring, data collection, and transmission of breeding environment parameters or animal production data were realized by using an intellectual mobile terminal to analyze and give early warning of the collected data. Then, the system will selectively turn on or off the remote intelligent environmental control equipment (draught fan, light, heater, and water pump etc.) based on the analysis results. The second example was the construction of a cloud-computing platform of cow-breeding farms and pig-breeding farms-that is, production data of hundreds or thousands farms were collected by network databases and data was cloud-stored as well as cloud-analyzed in the form of formal meta data, and the platform would give farmers warning information based on the analysis of production and breeding database by data mining technology. The third example was the development and application of automatic electro-mechanical feeding control systems of lactating sows, which was composed of electro-mechanical systems, wireless network technology, mobile SQL Lite network database, electronic data interchange, and feed intake prediction models of lactating sow nutrient requirements. This paper also analyzed the deficiencies of animal husbandry's IoT in technology, product, application, related policies, and people's cognitive from microcosmic to macrocosmic aspects, and suggestions were given based on the above deficiencies. Above all, the modernization development of animal husbandry needs the support of the IoT and IoT in turn is urged to accumulate its positive energy and promote itself better through applications in the different technological fields.

       

    /

    返回文章
    返回