杜兆辉, 和贤桃, 杨丽, 张东兴, 崔涛, 钟翔君. 玉米精准变量播种技术与装备研究进展[J]. 农业工程学报, 2023, 39(9): 1-16. DOI: 10.11975/j.issn.1002-6819.202303118
    引用本文: 杜兆辉, 和贤桃, 杨丽, 张东兴, 崔涛, 钟翔君. 玉米精准变量播种技术与装备研究进展[J]. 农业工程学报, 2023, 39(9): 1-16. DOI: 10.11975/j.issn.1002-6819.202303118
    DU Zhaohui, HE Xiantao, YANG Li, ZHANG Dongxing, CUI Tao, ZHONG Xiangjun. Research progress on precision variable-rate seeding technology and equipment for maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(9): 1-16. DOI: 10.11975/j.issn.1002-6819.202303118
    Citation: DU Zhaohui, HE Xiantao, YANG Li, ZHANG Dongxing, CUI Tao, ZHONG Xiangjun. Research progress on precision variable-rate seeding technology and equipment for maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(9): 1-16. DOI: 10.11975/j.issn.1002-6819.202303118

    玉米精准变量播种技术与装备研究进展

    Research progress on precision variable-rate seeding technology and equipment for maize

    • 摘要: 变量播种技术可依据农田环境空间异质性调整玉米播种量,实现生长环境与播种量的合理精准匹配,是突破玉米单产提升瓶颈、提高资源利用效率、实现玉米生产提质增效的重要手段。该研究按照玉米变量播种技术实施过程,从土壤肥力指标精确获取技术、最佳播量决策技术以及播量精准调控技术3个方面对玉米变量播种技术与装备进行综述。阐述了基于近地传感和遥感的土壤肥力指标快速获取的研究与应用现状,并对影响土壤肥力指标由点到面转化的土壤属性空间插值方法和影响土壤肥力分类结果的农田管理区划分方法进行了系统总结;重点分析了基于农田管理区和基于模型的变量播种决策方法的研究现状与优缺点,依据国外变量播种决策研究思路,同时结合中国国情提出了基于模糊推理、田间试验和机器学习的3种播量决策方法;综述了国外变量播种控制系统的结构组成与工作原理,归纳了国内电驱排种系统在作业速度测量、排种器驱动方式等方面取得的研究进展,并重点剖析了变量播种过程中存在的播种滞后问题及其补偿方法。针对中国玉米变量播种技术仍处于初级阶段,最佳播量决策技术与播量精准调控技术薄弱的问题,提出未来在玉米变量播种领域需开展的研究重点和发展建议:1)研发符合中国国情的变量播种装备,实现玉米单产的进一步提升,应加快对土壤肥力指标原位动态检测方法及装备的研究,实现土壤肥力指标的精准快速高密度获取;2)应着重对变量播种决策技术进行研究,开展广泛的基于土壤属性的玉米播量决策试验,建立试验数据查询平台;3)应加强对玉米精量排种器、电驱式排种控制系统的深入研究,特别是对作业速度高精度检测方法和无刷电机高精度控制算法的研究,研制具备高排种质量、高响应速度的玉米精量播种单体。

       

      Abstract: Maize is one of the most important cereal crops in the world. Maize production is of great significance to alleviate the world food crisis. The maize seeding rate can be adjusted during variable-rate seeding according to the spatial heterogeneity of the farmland environment, which is an important means to break through the bottleneck of maize yield improvement and improve resource utilization efficiency. In this review, the variable-rate seeding of maize was summarized from three aspects: the accurate acquisition of soil fertility indicators, the optimal seeding rate decision-making, and the precise control of seeding rate. The research status was also outlined on the rapid detection of soil fertility indicators using near earth and remote sensing. The spatial interpolation methods of soil attributes and farmland management zoning methods commonly used to accurately express the spatial distribution of soil fertility indicators were summarized. An emphasis was put on the research status and the advantages and disadvantages of variable-rate seeding decision-making methods based on farmland management zones and models. Based on the research ideas of developed countries and combined with the national conditions of China, three seeding decision-making methods based on fuzzy reasoning, field experiments, and machine learning were proposed. The structural composition and working principle of variable-rate seeding control systems were summarized in the developed countries. The research progress was reviewed on the electric drive seed-metering system in the variable-rate seeding process, in terms of the operating speed measurement, seed-metering device driving, seeding delay, and the compensation. The research gap was determined in the variable-rate seeding technology between developed countries and China. The research priorities and development suggestions were proposed for China in the field of variable-rate seeding of maize in the future. Developed countries were carried out the extensive and in-depth research on dynamic detection of soil fertility indicators around spectral analysis, electromagnetic induction, and current voltage four terminal. A variety of dynamic detection equipment was also developed for the soil fertility indicators. However, China is still in the theoretical research stage of in-situ dynamic detection of soil fertility indicators at present. There was few relevant equipment to realize the dynamic detection. Multi indicators high-precision collaborative detection using multi-sensor fusion has been the development trend of dynamic detection of soil fertility indicators. The Kriging and k-means clustering with the geo-statistics were the most studied and applied methods for the soil attribute spatial interpolation and farmland management area division, respectively. In terms of optimal seeding rate decision-making, the seeding rate decision-making on farmland management zone was still occupied the leading position in the field of seeding rate decision-making, due to its simplicity and strong regional adaptability. With the deepening of research on the mechanism of soil fertility affecting maize seeding rate and the continuous accumulation of experimental data for seeding rate decision-making, model-based precision seeding rate decision-making methods will be expected to gradually develop in the future. The variable-rate seeding control system with a controller as the core is the carrier for implementing variable seeding operations and is mainly composed of a human-machine interface, controller, satellite positioning system, communication unit, and seeding unit. Developed countries have realized the various variable-rate seeding control systems with different architectures. The main research was conducted on the electric drive seed-metering control system from the aspects of operation speed detection, seed-metering device driving, and control system architecture optimization. But there was no the core technology of variable-rate seeding in China at present. Much attention can be put on the dynamic detection of soil fertility indicators and the decision-making of the best maize seeding rate. The precision metering and electric drive metering control system of maize can be developed for a maize precision seeding unit with the high seeding quality and response speed for variable seeding operations.

       

    /

    返回文章
    返回