曲敏, 王宇, 朱秀清, 朱颖, 刘琳琳, 黄雨洋, 吕铭守, 孙冰玉. 谷朊粉基共混黏合体系的构建及在素肉饼中的应用[J]. 农业工程学报, 2022, 38(19): 285-294. DOI: 10.11975/j.issn.1002-6819.2022.19.031
    引用本文: 曲敏, 王宇, 朱秀清, 朱颖, 刘琳琳, 黄雨洋, 吕铭守, 孙冰玉. 谷朊粉基共混黏合体系的构建及在素肉饼中的应用[J]. 农业工程学报, 2022, 38(19): 285-294. DOI: 10.11975/j.issn.1002-6819.2022.19.031
    Qu Min, Wang Yu, Zhu Xiuqing, Zhu Ying, Liu Linlin, Huang Yuyang, Lyu Mingshou, Sun Bingyu. Construction of gluten based blend adhesive system and its application in vegetable meat pie[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 285-294. DOI: 10.11975/j.issn.1002-6819.2022.19.031
    Citation: Qu Min, Wang Yu, Zhu Xiuqing, Zhu Ying, Liu Linlin, Huang Yuyang, Lyu Mingshou, Sun Bingyu. Construction of gluten based blend adhesive system and its application in vegetable meat pie[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 285-294. DOI: 10.11975/j.issn.1002-6819.2022.19.031

    谷朊粉基共混黏合体系的构建及在素肉饼中的应用

    Construction of gluten based blend adhesive system and its application in vegetable meat pie

    • 摘要: 谷朊粉经水合作用形成面筋蛋白(Wheat Gluten Protein,WGP)网络结构,具有良好的黏弹性和延展性,但加热后其网络结构易破裂,稳定性较低。该研究利用谷朊粉、大豆分离蛋白(Soy Isolated Protein,SPI)、甲基纤维素(Methylcellulose,MC)、谷氨酰胺转氨酶(Glutamine Transaminage,TG酶)的原料特性,建立植物蛋白、亲水胶体、促凝胶酶的共混黏合体系,研究各组分对其理化性质、凝胶特性及结构的贡献和影响。结果表明,随着三种原料依次递进加入WGP,混合体系中二硫键含量分别较前一组降低81.03%、升高248.50%和0.70%,游离巯基含量升高68.79%、降低28.90%和20.44%,表面疏水性升高5.07%、降低6.85%、再升高17.17%,高分子量麦谷蛋白组分分子量则逐渐增加;持水性升高5.25%、2.91%、2.79%,凝胶强度升高104.14%、24.66%、3.52%;共混凝胶的储能模量和损耗模量均逐渐升高;TG酶加入后,阻止了α-螺旋逐渐向β-转角、无规则卷曲的转化,α-螺旋和β-折叠含量上升。可见共混黏合体系凝胶的分子间缠结点增多、凝胶性变强。虽然SPI的添加部分破坏了WGP网络结构,但SPI、MC、TG酶增加了蛋白的聚集程度和凝胶强度。扫描电镜观察显示,SPI镶嵌在WGP网络骨架中,形成半网络半填充的新架构形式;随着MC和TG酶的依次加入,在形成大量交联丝状结构的基础上,局部形成连续膜状结构将大豆拉丝蛋白(Soy Drawing Protein,SDP)粒子覆盖。说明SDP粒子被完整、紧密地包裹于谷朊粉-SPI-MC-TG酶共混黏合体系中。利用此黏合体系制成SDP基素肉饼,依次向复水SDP中添加四种原料,显示素肉饼的硬度、内聚性、咀嚼性和弹性等均得以提升。因此,该研究建立谷朊粉基共混黏合体系是改善SDP为主要原料的素肉制品品质的有效方法。

       

      Abstract: Wheat Gluten Protein (WGP) prepared by gluten through hydration build a great and compact network structure, which has great viscoelasticity, extensibility and film formability. However, the structure is easy to break after heating due to low stability and water-holding capacity. In this research, a blended system was established to contain the vegetable protein, hydrophilic colloid, and coagulating gelatinase using the wheat gluten, Soy Isolated Protein (SPI), Methylcellulose (MC), and Glutamine Transaminase (TG). It is vital to investigate the effects and relationship between above components of the physicochemical properties, gel properties and structure in the blended adhesion system. The results showed that the SPI, MC and TG were added step by step to WGP and the disulfide bond content in the mixed system decreased by 81.03%, increased by 248.50% and 0.70%, the free sulfhydryl group content increased by 68.79%, 28.90% and 20.44%. Meanwhile, the surface hydrophobicity increased by 5.07%, decreased by 6.85%, and increased by 17.17%, decreased by molecule weight of glutenin component increased gradually with the gradual addition of WGP into the mixed system. The water holding capacity increased by 5.25%, 2.91%, and 2.79%, and the gel strength increased by 104.14%, 24.66%, and 3.52%. When it comes to the molecular weight, SPI could perturb the WGP network structure, and the less soluble parts of SPI intersect with WGP leading to the disappearance of some subunits. The MC was added to strengthen the cross-linking between proteins, further producing increasing aggregates for the molecular weight, but the TG enzymes dispersed the large aggregates into the uniform small aggregates. During the progressive addition of the three fractions, the tangles of molecular chains in the gel system increased with the degree of gelation, and the storage modulus and loss modulus rise gradually. The TG enzyme was added to prevent the transforming of α-helix structure into β-turn and irregular coil structure, leading to the increase in the α-helix and β-sheet content. The intermolecular entanglement points of the gel in the blend bonding system promoted stronger gel property. This showed that the addition of SPI partially destructed the network structure of WGP, but the MC and TG enzymes would promote the aggregation degree and strength of protein gel. The gel structure was formed by SPI bind to the WGP covalent, disulfide bonds, and hydrophobic interactions. The MC was added to cause the double protein water loss aggregation through hydrogen bonding. The TG enzyme was further induced to promote the crosslinking between SPI and WGP to make the skeleton network structure closely. The SEM observation indicated that the SPI was embedded in the WGP network skeleton, forming a new architecture as half network and half filling. With the addition of MC and TG enzymes in turn, on the basis of a large number of cross-linked filamentous structures, local continuous membrane structures were formed to cover the particles by Soybean Drawing Protein (SDP). It showed that the SDP particles were completely and tightly wrapped in the gluten SPI-MC-TG enzyme blend adhesive system. The SDP based meatloaf was made using this bonding system, and four raw materials were added to the rehydrated SDP in turn, which showed that the hardness, cohesion, chewiness, and elasticity of the meatloaf were improved. Therefore, it is an effective way to establish the gluten based blending adhesive system for better quality meat products, particularly with the SDP as the main raw material.

       

    /

    返回文章
    返回