张柏, 凌彩金, 李露青, 周巧仪, Zhenfeng Li, 宋飞虎, 宋春芳. 基于数据融合策略的红茶发酵程度判别[J]. 农业工程学报, 2022, 38(15): 339-347. DOI: 10.11975/j.issn.1002-6819.2022.15.037
    引用本文: 张柏, 凌彩金, 李露青, 周巧仪, Zhenfeng Li, 宋飞虎, 宋春芳. 基于数据融合策略的红茶发酵程度判别[J]. 农业工程学报, 2022, 38(15): 339-347. DOI: 10.11975/j.issn.1002-6819.2022.15.037
    Zhang Bai, Ling Caijin, Li Luqing, Zhou Qiaoyi, Zhenfeng Li, Song Feihu, Song Chunfang. Discrimination of black tea fermentation degrees based on data fusion strategy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 339-347. DOI: 10.11975/j.issn.1002-6819.2022.15.037
    Citation: Zhang Bai, Ling Caijin, Li Luqing, Zhou Qiaoyi, Zhenfeng Li, Song Feihu, Song Chunfang. Discrimination of black tea fermentation degrees based on data fusion strategy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 339-347. DOI: 10.11975/j.issn.1002-6819.2022.15.037

    基于数据融合策略的红茶发酵程度判别

    Discrimination of black tea fermentation degrees based on data fusion strategy

    • 摘要: 发酵是红茶加工过程中关键的一道工序,对红茶的品质形成有着重要影响。该研究以大叶种英德红茶中的英红九号为研究对象,试验收集了204份不同发酵时间的红茶样品并使用便携式近红外光谱仪和工业相机获取红茶发酵中的信息,基于近红外光谱数据、图像数据和数据融合策略分别建立了红茶发酵程度判别模型。通过分析茶多酚和儿茶素类含量的变化,将红茶的发酵划分为3个阶段,即发酵不足、发酵适度和发酵过度。采用Savitzky-Golay光滑对原始光谱进行预处理,利用竞争自适应重加权采样(Competitive Adaptive Reweighted Sampling, CARS)、连续投影算法(Successive Projections Algorithm, SPA)和主成分分析(Principal Components Analysis, PCA)对近红外光谱变量进行降维处理;相应地,图像进行去阴影后提取了9个颜色特征变量,采用皮尔森(Pearson)相关分析和主成分分析进行特征变量提取。最后采用线性判别分析(Linear Discriminant Analysis, LDA)和支持向量机(Support Vector Machine, SVM)分别建立了基于近红外、图像和两者数据融合的分类模型。结果表明,在建模数据相同的条件下,非线性的支持向量机模型性能优于线性判别分析模型。单一传感器数据建模效果不佳,近红外光谱和图像判别模型的预测集最大准确率仅为83.82%和73.53%。低层次数据融合建模效果较单一传感器数据建模无明显提升,而中层次的数据融合建模效果比单一数据建模均有显著提高,其中SPA提取光谱变量结合Pearson提取图像变量建立的判别模型效果较佳,校正集和预测集准确率分别达到了97.06%和95.59%。研究表明,近红外光谱和视觉结合的中层次融合策略可以作为一种快速判别红茶发酵程度的方法,研究结果为红茶发酵程度构建等级模型与判别奠定了一定的理论基础,为红茶发酵的自动化检测提供了重要依据。

       

      Abstract: Fermentation is a key processing step for the quality of black tea. Tea polyphenols (catechins) are generally oxidized by the polyphenol oxidase and peroxidase to form the theaflavins and thearubigins. In this research, the Yinghong NO.9 of Yingde black tea was collected by the kind of one bud and two leaves. The data was collected during different black tea fermentation time using a portable near-infrared spectrometer and a Charge-Coupled Device (CCD) camera. A discriminant model was established for the black tea fermentation degree using near-infrared spectra, images, and the data fusion of spectra and images. Specifically, 204 samples of black tea at different fermentation time were collected to acquire the near-infrared spectrum and images. The content of tea polyphenols was determined using an ultraviolet spectrophotometer with a detection wavelength of 765 nm. The catechins concentration was measured by High-Performance Liquid Chromatography (HPLC) at a flow rate of 1 mL/min and detection wavelength of 278 nm. The contents of tea polyphenols and catechins decreased rapidly in the early period, tending to be flat at 4-5 h, and continued to fall off after 5.5 h. According to the changes in the tea polyphenols and catechins, the fermentation degree of black tea was divided into three stages: insufficient, moderate, and excessive fermentation. Savitzky-Golay smoothing was adopted to process the rough burrs of the original spectrum that were caused by noise interference. Then, the Competitive Adaptive Reweighted Sampling (CARS) and Successive Projections Algorithm (SPA) were applied to reduce the data dimensionality of near-infrared spectral variables, where the feature wavelengths were selected. Meanwhile, nine color feature variables were extracted from the images after shadow removal. Pearson correlation analysis between chemical components and color variables was conducted to extract the feature variables. In addition, the Principal Component Analysis (PCA) was employed to reduce the data dimensionality for the distribution of black tea fermentation samples. The PCA of spectral and image data showed the similar three fermentation stages were not separated significantly, indicating that PCA cannot effectively discriminate the fermentation stage. Finally, the discrimination models were established using the near-infrared, image, and their data fusion through Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). The comparison of the model showed that the performance of nonlinear SVM models was better than that of LDA models under the same conditions, indicating the unbalanced process of black tea fermentation. Furthermore, a single sensor failed to discriminate the fermentation degree. There was less performance in the models using a single sensor, due mainly to the complex change of fermentation information. In general, the maximum accuracies were only 83.82% and 73.53% for the prediction set of the discrimination models using near-infrared spectra and images, respectively. The performance of the middle-level data fusion models was significantly improved, compared with the models founded on a single sensor, or the low-level data fusion. The reason was that the low-level date fusion brought the variables irrelevant to the black tea fermentation. Among them, better performance was achieved in the SVM discriminant model that was established by SPA extraction of spectral variables and Pearson correlation analysis extraction of image variables, with 97.06% and 95.59% accuracies of calibration and prediction set. Consequently, a rapid and nondestructive method can be used to evaluate the degree of black tea fermentation under the middle-level fusion strategy using near-infrared spectroscopy and computer vision. A theoretical foundation was laid to establish a grade model and discrimination of black tea fermentation degrees. The finding can provide an important basis for the detection and automation of black tea fermentation.

       

    /

    返回文章
    返回