孙林豪, 冯仲科, 苏珏颖, 邵亚奎, 路丹桂, 马天天. 便携式高精度立木胸径测量装置研制与试验[J]. 农业工程学报, 2022, 38(15): 31-41. DOI: 10.11975/j.issn.1002-6819.2022.15.004
    引用本文: 孙林豪, 冯仲科, 苏珏颖, 邵亚奎, 路丹桂, 马天天. 便携式高精度立木胸径测量装置研制与试验[J]. 农业工程学报, 2022, 38(15): 31-41. DOI: 10.11975/j.issn.1002-6819.2022.15.004
    Sun Linhao, Feng Zhongke, Su Jueying, Shao Yakui, Lu Dangui, Ma Tiantian. Development and experiment of the portable high precision measurement device for tree DBH[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 31-41. DOI: 10.11975/j.issn.1002-6819.2022.15.004
    Citation: Sun Linhao, Feng Zhongke, Su Jueying, Shao Yakui, Lu Dangui, Ma Tiantian. Development and experiment of the portable high precision measurement device for tree DBH[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 31-41. DOI: 10.11975/j.issn.1002-6819.2022.15.004

    便携式高精度立木胸径测量装置研制与试验

    Development and experiment of the portable high precision measurement device for tree DBH

    • 摘要: 立木胸径是森林资源调查中最重要的测量指标。为了实现高效、精准、简便地测量立木胸径,适应复杂树形和不同径级的树木,节省内外业勘测成本,该研究研制了一款立木胸径测量装置。基于隧道磁阻旋转编码器构建适合低成本、轻小型机电结构和高分辨力处理算法的方法,同时开发了由嵌入式软件、Android端应用和Web端应用构成的系统软件,通过多功能按键组合设计了特殊树形和大径级树木的作业流程。在单木勘查作业过程中,装置的机电结构会将立木胸径由机械量先转换为磁信号再转换成电信号,之后由嵌入式软件中集成的处理算法把电信号换算成胸径测量数据。完成所有单木勘查作业后,装置内的蓝牙将数据传输至Android端应用进行存储再上传到Web端的数据库中。为验证装置的测量精度和作业效率,选取包含多个树种的196株立木和一块包含42株立木的小样地进行试验。试验结果表明:该装置对不同径级的立木都具有较高的测量精准度(总平均绝对误差为0.08 cm、平均绝对百分比误差为0.37%、均方根误差为0.12 cm和相对均方根误差为0.54%);人均每株立木测量耗时为9.3 s(约为传统围尺方法的1/3),作业效率高。该装置解决了传统围尺在数据量测、记录和入库上的短板,降低了人力成本,比非接触式、卡测类、电子拉绳类仪器的制造成本低几百到上万元,造价仅为260元,且携带方便(质量仅为230 g),符合国家森林资源连续清查技术规定的精度要求,在森林资源调查中具有宽广的应用前景。

       

      Abstract: The Diameter at Breast Height (DBH) (at a height of 1.3 m on the bole of a tree) has been one of the most important indicators during tree measurements in forestry resource inventory. However, the current DBH measurement cannot fully meet the requirement in recent years, due to the low portability, precision, efficiency, applicability, and stability, together with the complex operation, rudimentary software, high costs, and short range. In this study, an innovative device was developed to accurately, efficiently, and conveniently measure the tree DBH suitable for the complex tree shapes and the different diameter classes, while cost-saving in the office-field work survey. The specification of the device was as follows (size: 8.35 cm×5.80 cm×5.55 cm; weight: 230 g; resolution: 0.01 cm; linear range: 0-150 cm; battery capacity: 4 000 mAh input vatage: 3.7 V, output votuge: 5 V; micro-processor chip: STC15W4K48, 8 bits; encoder type: PD-1503-SDI, 12 bits). A Tunnel Magneto-Resistance (TMR) rotary encoder was also combined with the low-cost, small size, and light weight electro-mechanical structure, and high-resolution processing. As such, the measurement device was achieved in the electronization, digitization, portability, and integration of office and filed work for the tree DBH. A supporting system software was also developed, including the embedded software, mobile terminal application, and Web terminal application. In the process of an individual tree survey, the electro-mechanical structure of the device firstly converted the mechanical parameter of tree DBH to the magnetic signal, and then the magnetic signal was converted to an electrical signal. Secondly, the electrical signal was converted into the DBH measurement data using the processing integrated into the embedded software. Thirdly, the operation flow was better applied to measure the trees with special shapes and large diameters using multi-function key combinations. After all individual tree surveys, the DBH measurement data was transmitted by Bluetooth in the device to the Android application, and then uploaded to the database managed by the Web application. The measurement accuracy and operation efficiency of the device were verified to select the 196 standing trees with many tree species and a small sample plot of 42 standing trees in the Botanic Garden of Beijing Forestry University, China. The test results showed that the device presented a higher accuracy to measure the standing trees of different diameter classes than before. The total tree DBH measurement data from different diameter classes (weight: 1 092 g; resolution: 0.001 cm; linear range: 0-500 cm) indicated the mean absolute error (MAE) of 0.08 cm, Mean Absolute Percentage Error (MAPE) of 0.37%, Root Mean Square Error (RMSE) of 0.12 cm, and Relative Root Mean Square Error (RRMSE) of 0.54%, compared with an electronic draw-wire displacement sensor. In addition, a high measurement efficiency was achieved, where the average measurement time per person of each tree was 9.3 s from the efficiency test. The devices demonstrated nearly two times faster than the traditional diameter tape (weight: 42 g; resolution: 0.01 cm; linear range: 0-200 cm), while one time faster than the electronic draw-wire displacement sensor. Additionally, the price of the device was only 260 RMB, due to a 12 bits encoder (price: 135 RMB). In conclusion, this device behaved at a low cost and less labor consumption, fully meeting the technical requirement of accuracy for the Continuous Forest Inventory (CFI) in China. Therefore, the finding can provide broad application prospects in forestry resource inventory.

       

    /

    返回文章
    返回