黎云云, 畅建霞, 樊晶晶, 余波. 气候和土地利用变化下黄河流域农业干旱时空演变及驱动机制[J]. 农业工程学报, 2021, 37(19): 84-93. DOI: 10.11975/j.issn.1002-6819.2021.19.010
    引用本文: 黎云云, 畅建霞, 樊晶晶, 余波. 气候和土地利用变化下黄河流域农业干旱时空演变及驱动机制[J]. 农业工程学报, 2021, 37(19): 84-93. DOI: 10.11975/j.issn.1002-6819.2021.19.010
    Li Yunyun, Chang Jianxia, Fan Jingjing, Yu Bo. Agricultural drought evolution characteristics and driving mechanisms in the Yellow River Basin under climate and land use changes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 84-93. DOI: 10.11975/j.issn.1002-6819.2021.19.010
    Citation: Li Yunyun, Chang Jianxia, Fan Jingjing, Yu Bo. Agricultural drought evolution characteristics and driving mechanisms in the Yellow River Basin under climate and land use changes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 84-93. DOI: 10.11975/j.issn.1002-6819.2021.19.010

    气候和土地利用变化下黄河流域农业干旱时空演变及驱动机制

    Agricultural drought evolution characteristics and driving mechanisms in the Yellow River Basin under climate and land use changes

    • 摘要: 为全面剖析气候和土地利用变化下黄河流域农业干旱时空演变特征及驱动机制,该研究首先构建黄河流域SWAT分布式水文模型,模拟黄河流域水循环过程,基于标准化土壤湿度指数(Standard Soil Moisture Index,SSMI),识别不同干旱等级下的农业干旱历时、强度及干旱事件,分析黄河流域不同分区农业干旱特征值以及干旱事件频率在年季尺度上的演变特征;在此基础上,通过SWAT模型驱动农业干旱模拟方案集,厘定和量化气候和土地利用变化对黄河流域农业干旱的影响贡献率。结果表明:累积时间尺度越大,农业干旱发生的次数越少,但历时越长,农业干旱开始和结束时间多集中于春季和夏季;黄河流域90年代农业干旱最为严峻,尤其上游C区最容易遭受重旱和特旱,农业干旱频率高达70%~90%;气候变化是驱动黄河流域农业干旱发生的主要诱因,贡献率约为50%~90%,而土地利用变化对农业干旱的影响相对较弱,贡献率约为10%~50%。研究结果可为黄河流域制定合理的农业抗灾措施提供参考。

       

      Abstract: Agricultural drought has posed a serious threat to the national food security, social, environmental, and economic sustainable development in China over the last 20 years. The average annual disaster area has been accounted for more than 50% of natural disasters against climate warming and intensive human activities. Therefore, it is highly urgent to clarify the drought evolution and driving mechanisms for scientific drought prevention. More importantly, the Yellow River Basin provides the water supply for about 140 million people in the region, where about 15% of the total irrigated land was for agricultural irrigation in the country. However, the Yellow River Basin has historically been frequently experiencing serious droughts. For example, the disaster area caused by agricultural drought after 2000 was nearly six times that before 2000. Therefore, taking the Yellow River Basin as a study area, the main objective of this study is to comprehensively analyze the temporal and spatial evolution characteristics and driving mechanisms of agricultural drought. Six sub-basins were divided according to the climatic and topographic characteristics. The standard soil moisture index (SSMI) and threshold method were used to identify the duration, intensity, and drought events under different drought levels. A systematic analysis was also made on the agricultural drought characteristics and event frequencies in different zones in the study area on the annual and seasonal scales. A SWAT model in a simulation scheme was then selected to quantify the impacts of climate and land use land cover (LULC) change on agricultural drought in the study area. Results showed that: 1) The fewer frequencies occurred for the agricultural drought with longer duration, as the cumulative time was much longer. The duration of the agricultural drought was then remarked by SSMI-1, SSMI-6, and SSMI-18 corresponding to about 1-8, 1-12, and 1-22 months, respectively. The beginning and end time of agricultural drought was mainly concentrated in spring and summer. 2) The most serious agricultural drought occurred in the study area during 1981-1990, where that was greatly alleviated in most zones during 2001-2010. Specifically, Zone C and A were the most vulnerable to severe and extreme agricultural drought in the 1990s and 2000s, respectively. 3) Climate change was the main factor that caused the agricultural drought in the study area with a contribution rate of about 50%-90%, while the impact of LULC change was relatively weak with a contribution rate of about 10%-50%. Consequently, the greatest driving impacts of climate and land use were about 60%-90% and 10%-50%, respectively, on the frequency of agricultural drought in the study area. The findings can provide much more accurate information for actual management and disaster prevention of agricultural drought.

       

    /

    返回文章
    返回