袁承程, 张定祥, 刘黎明, 叶津炜. 近10年中国耕地变化的区域特征及演变态势[J]. 农业工程学报, 2021, 37(1): 267-278. DOI: 10.11975/j.issn.1002-6819.2021.01.032
    引用本文: 袁承程, 张定祥, 刘黎明, 叶津炜. 近10年中国耕地变化的区域特征及演变态势[J]. 农业工程学报, 2021, 37(1): 267-278. DOI: 10.11975/j.issn.1002-6819.2021.01.032
    Yuan Chengcheng, Zhang Dingxiang, Liu Liming, Ye Jinwei. Regional characteristics and spatial-temporal distribution of cultivated land change in China during 2009-2018[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 267-278. DOI: 10.11975/j.issn.1002-6819.2021.01.032
    Citation: Yuan Chengcheng, Zhang Dingxiang, Liu Liming, Ye Jinwei. Regional characteristics and spatial-temporal distribution of cultivated land change in China during 2009-2018[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 267-278. DOI: 10.11975/j.issn.1002-6819.2021.01.032

    近10年中国耕地变化的区域特征及演变态势

    Regional characteristics and spatial-temporal distribution of cultivated land change in China during 2009-2018

    • 摘要: 随着工业化、城市化进程推进,中国耕地在数量和质量方面均发生了显著变化。通过分析2009-2018年中国耕地的时空变化,掌握中国耕地变化的区域特征与变化态势,有助于制定差别化的区域耕地保护政策与管理策略,为保障粮食安全提供科学依据。该研究基于2009-2018年土地调查格网数据,利用GIS空间分析、数学指数模型等方法,从耕地数量、空间以及立地条件等方面研究近10年来中国的耕地时空变化特征。研究表明:1)2009-2018年间中国耕地数量总体稳定,但是耕地数量变化的区域差异较大。全国耕地共减少39.37万hm2,减少幅度为0.29%。2)从市域尺度分析,呈现以“哈尔滨-郑州-昆明”带为中心的东-中-西分异特征,该中心带内耕地净减少面积与全国耕地净减少总量基本持平,而该中心带以东地区的耕地净减少量与中心带以西地区的耕地净增加量相近。3)耕地空间变化率在长江以北的长江中下游平原区、黄淮海平原区以及四川盆地及其周边地区相对较高,表明这些区域人为调整耕地空间布局的强度较大,但其市域内净增加耕地面积总量却不大。4)耕地减少主要分布在距离主要城市中心30 km以内的区域,而耕地增加主要发生在离城市中心40 km以外区域,这进一步说明城市化发展仍然是当前耕地减少的主导因子。此外,石嘴山、延安、雅安、榆林、张家口、丽水和泉州等地的耕地平均海拔增加较大,说明这些地区耕地“上山”现象较为严重。因此,今后应根据耕地变化“热点地区”的动态识别,提升自然资源管理和督察的精准定位和因地施策的能力。

       

      Abstract: A contradiction has become greatly acute between the limited cultivated land resources and the ever-increasing expansion of construction and ecological land with the acceleration of industrialization and urbanization in China. It is necessary to explore the regional characteristics and change trend of cultivated land for national food security. According to the 2009-2018 land survey grid data, this study aims to investigate the temporal and spatial changes of cultivated land in China in the past 10 years from the aspects of quantity, space and site conditions with the aid of GIS spatial analysis, and mathematical index models. In terms of the quantity change of cultivated land, the index of the dynamic degree model and the relative change rate were used to characterize the range and regional difference of cultivated land change. In terms of the spatial change of cultivated land, the index of change aggregation was introduced to indicate whether the types of cultivated land change were agglomeration. In addition, the index of spatial change rate was introduced to estimate the intensity of spatial change in the regional cultivated land. In terms of farmland site conditions, the average altitude of cultivated land and the distance between cultivated land and city were usually used to represent indirectly the quality change of cultivated land. The results showed that: 1) The amount of cultivated land in China was generally stable from 2009 to 2018, but there was quite difference in the regional areas. The cultivated land decreased by 393 700 hm2 in the country, with a reduction rate of 0.29%. Specifically, Shandong, Hubei and Liaoning decreased the most, whereas, Xinjiang, Inner Mongolia and Guangdong increased the most. 2) In the past 10 years, the changing pattern of cultivated land at the city level in China has shown a central belt along the “Harbin-Zhengzhou-Kunming” line. The reduction in the central zone was basically the same as the national reduction, whereas, the reduction in the eastern part of the central zone was similar to the increase in the western part. The reduced areas with high average dynamics of cultivated land were mainly distributed in provincial capitals and key cities, whereas, the increased areas were mostly located in the southern hilly areas. 3) The spatial change rate of cultivated land was relatively high in the northern part of the of Middle and Lower Reaches Yangtze River Plain, the Huanghuaihai Plain, and the Sichuan Basin, indicating that great efforts were needed to adjust the spatial layout of cultivated land. However, the net increase in total was not large in the city, combined with the change characteristics in the number of cultivated land. 4) The reduced cultivated land in China was mainly distributed within 30 km from the center of major cities, while the increase mainly occurred in the areas 40 km away from the center of the city. As such, the country can be divided into three types of functional regions, according to the location of a buffer zone. Combined with the quantity and spatial change, it was found that the average altitude of cultivated land increased significantly in Shizuishan, Jiayuguan, Altay, Ili, Alxa, Hotan, Yan'an, Ya'an, Yulin, Zhangjiakou, Lishui and Quanzhou, indicating a more serious “uphill” phenomenon of cultivated land in these areas. The results show that it is necessary to improve the precise positioning of natural resource management and the ability to implement targeted and differentiated policies based on the dynamic identification of “hot spots” of cultivated land changes in the future.

       

    /

    返回文章
    返回