Abstract
Abstract: The chemical composition of soybean seeds has an important effect on the mechanical properties, and there is an inevitable connection between them. In order to study the mechanical properties of soybean seed under different loading types, and to explore the relationship between chemical composition and mechanical properties of soybean seed, 11 kinds of soybeans were selected as research material with the moisture content of 8.65%, and the chemical components test, the needle inserting test, the shear test and the compression test were carried out. Depending on the outline structure of soybean seed, compression types included flat placing, side placing, stand placing, and shear types included horizontal and vertical. The experiment was carried out in Gansu Agricultural University from March to July in 2016. Gray relation degree method was used to study the relationship of the 2 types of indices, chemical indices were set as the reference sequence, mechanical parameters were set as the comparison sequence, and the correlation degree and correlation order were analyzed with DPS software. With the support of Abaqus software, soybean seed constitutive modeling was set up, which defined the structure and properties by using the finite element software, and 3 types of compression test processes were simulated. The validity of the constitutive model was verified by comparing the simulation curve and the testing curve. Through mechanical test and compression simulation of soybean seed, the results indicated that the hardness of soybean seed was between 18.39 and 52.58 N/mm, the crippling strength of soybean seed was between 3.65 and 15.32 MPa, the ultimate shear force of soybean seed was between 12.70 and 52.33 N, and the variety had a highly significant effect on its mechanical properties (P<0.01). The resistance shear capacity of the virtical axis was significantly higher than the horizontal axis, and the ability of resisting damage from higher to lower was flat placing, side placing, and stand placing. Different compression types and shear directions had highly significant influence on the crippling strength and ultimate shear force (P<0.01). Force-deformation curves from the test fitted the simulation quite well, and the maximum deviation of flat placing, side placing and stand placing were 12.24%, 6.96%, and 9.55% respectively, which meant that the soybean seed constitutive modeling could reflect the crushing features. Through the chemical composition determination test, the results showed that crude protein and crude fat were the main chemical composition of soybean seed, and the average values of their mass fractions were 40.84% and 20.23% respectively. The contents of chemical components in different varieties were significantly different (P<0.01). The gray relation analysis indicated that in mechanical indices, hardness and contact stiffness were most closely related to the chemical content, the related degree of hardness with crude protein content, crude fat content, crude starch content and crude cellulose content was 0.309 4, 0.327 8, 0.171 9 and 0.191 8 respectively, and the related degree of contact stiffness with crude protein content, crude fat content, crude starch content and crude fiber content was 0.220 6, 0.283 7, 0.186 9 and 0.133 4 respectively. The crude protein content and crude fat content of soybean seed had a significant influence on hardness and contact stiffness, and the influence of crude starch content and crude cellulose content was lighter. Therefore the result has a great application potential in soybean seed storage and processing industry, and especially can offer a new method and basic for quality prediction and variety identification.