陆爽. 基于奇异值分解和支持向量机的滚动轴承故障模式识别[J]. 农业工程学报, 2007, 23(4): 115-119.
    引用本文: 陆爽. 基于奇异值分解和支持向量机的滚动轴承故障模式识别[J]. 农业工程学报, 2007, 23(4): 115-119.
    Lu Shuang. Fault pattern recognition of rolling bearing based on singularity value decomposition and support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(4): 115-119.
    Citation: Lu Shuang. Fault pattern recognition of rolling bearing based on singularity value decomposition and support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(4): 115-119.

    基于奇异值分解和支持向量机的滚动轴承故障模式识别

    Fault pattern recognition of rolling bearing based on singularity value decomposition and support vector machine

    • 摘要: 提出了基于奇异值分解和支持向量机进行滚动轴承故障诊断的新方法。对故障轴承的状态特征提取和故障特征准确分类是解决该问题的两个关键。奇异值分解可以将高维相关变量压缩为低维独立的主特征矢量,而支持向量机可以完成模式识别和非线性回归。利用上述原理根据轴承振动信号的变化特征,采用奇异值分解对其提取状态主特征矢量,然后利用建立的支持向量机多故障分类器完成滚动轴承故障模式的识别。试验结果表明,奇异值分解后的主特征矢量与支持向量机相结合可以很好的分辨出轴承的正常和故障状态,并且对未知故障有良好的识别能力。与常用的人工神经网络方法相比,该诊断方法具有更好的有效性、鲁棒性和精确性。

       

      Abstract: A novel fault diagnosis approach for rolling bearings based on singularity value decomposition(SVD) and support vector machine(SVM) was proposed. The key to the fault bearings diagnosis is condition feature extracting and fault feature classifying. Multidimensional correlated variables were converted into low dimensional independent main-eigenvector by means of singularity value decomposition. The pattern recognition and the nonlinear regression were achieved by the method of support vector machine. In the light of the feature of bearings vibration signals, main-eigenvector was obtained using singularity value decomposition, fault diagnosis of rolling bearing was recognized correspondingly using support vector machine multiple fault classifier. The experimental results show that the combination of main-eigenvector and support vector machine distinguish the normal and fault condition finely, and it also has good recognition ability to unknown fault samples. Comparing with the traditional artificial neural networks, the approach is more efficient, robust and precise.

       

    /

    返回文章
    返回