时荣超, 佟玲, 杜太生, 李栋浩, 秦永辉, 何柳月, 白小锐. 改进AquaCrop-KR模拟不同水分和种植密度制种玉米产量[J]. 农业工程学报, 2022, 38(15): 63-71. DOI: 10.11975/j.issn.1002-6819.2022.15.007
    引用本文: 时荣超, 佟玲, 杜太生, 李栋浩, 秦永辉, 何柳月, 白小锐. 改进AquaCrop-KR模拟不同水分和种植密度制种玉米产量[J]. 农业工程学报, 2022, 38(15): 63-71. DOI: 10.11975/j.issn.1002-6819.2022.15.007
    Shi Rongchao, Tong Ling, Du Taisheng, Li Donghao, Qin Yonghui, He Liuyue, Bai Xiaorui. Simulation of hybrid maize seed yield under different water regimes and planting densities based on modified AquaCrop-KR model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 63-71. DOI: 10.11975/j.issn.1002-6819.2022.15.007
    Citation: Shi Rongchao, Tong Ling, Du Taisheng, Li Donghao, Qin Yonghui, He Liuyue, Bai Xiaorui. Simulation of hybrid maize seed yield under different water regimes and planting densities based on modified AquaCrop-KR model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 63-71. DOI: 10.11975/j.issn.1002-6819.2022.15.007

    改进AquaCrop-KR模拟不同水分和种植密度制种玉米产量

    Simulation of hybrid maize seed yield under different water regimes and planting densities based on modified AquaCrop-KR model

    • 摘要: 模拟不同水分和种植密度条件下的作物产量对于制定合理的灌溉制度和种植模式进而保障中国水和粮食安全具有重要意义。AquaCrop-KR模型采用非线性方程拟合地上生物量和作物蒸腾间的关系,并利用水分生产函数模拟收获指数,从而提高了不同水分条件下的作物产量的模拟精度,但尚未涉及种植密度这一因子。该研究以西北旱区制种玉米为研究对象,于2013-2016年在甘肃武威绿洲农业高效用水国家野外科学观测研究站进行了田间试验,引入密度因子修正了AquaCrop-KR模型中的标准化水分生产力(Normalized Water Productivity, WP*)和收获指数(Harvest Index, HI)。校准结果表明HI与种植密度呈先增加后减小的抛物线关系,并且HI在营养生长期、开花期和生殖生长期的水分敏感指数均随种植密度的增加而增加;WP*随累积标准化作物蒸腾的增加呈先增后减的单峰变化,并且WP*的最大值随种植密度的增加而减小,与之相对应的累积标准化作物蒸腾随种植密度的增加而增大。验证结果表明,改进的AquaCrop-KR模型低估籽粒产量测量值5%,决定系数、相对均方根误差、平均相对误差、模型效率和一致性指数分别为0.87、0.079、0.057、0.750和0.942,表明该模型可以用来模拟制种玉米的籽粒产量。研究为模拟不同水分和种植密度下的作物产量提供了一种理论方法。

       

      Abstract: The simulation of crop yield is of great significance to develop irrigation scheduling and planting patterns, in order to ensure water and food security in the world. The AquaCrop-KR model has been commonly used as the non-linear equation to fit the relationship between the aboveground biomass and crop transpiration, as well as the water production functions. The harvest index was simulated for the higher prediction accuracy of the crop yield under different water regimes. However, the planting density cannot be considered in this model. The objective of this study was to modify the AquaCrop-KR model, and then simulate the hybrid maize seed yield under different water regimes and planting densities in an arid region of Northwest China. Two field experiments were conducted at the National Field Scientific Observation and Research Station on the Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province of China (37°52′N, 102°50′E) from 2013 to 2016. In the first experiment, six planting densities were set as 6.75, 8.25, 9.75, 11.25, 12.75, and 14.25 plants/m2 from 2013 to 2015. In the second experiment, there were 12 treatments in 2015, with three irrigation levels (full irrigation, 2/3 of full irrigation, and 1/3 of full irrigation) during the growing season, and four planting densities (8.25, 9.75, 11.25, and 12.75 plants/m2). Specifically, 1/3 of full irrigation was replaced by 1/2 of full irrigation in 2016. But, the rest of the irrigation levels were consistent with 2015. Some parameters were collected in both experiments, including the soil water content, evaporation, aboveground biomass, grain yield, and weather data. After that, the planting density factors were introduced to modify the normalized water productivity and harvest index in the AquaCrop-KR model. The calibration results showed that there was a parabolic relationship between harvest index and planting density, which first increased and then decreased. There was an increase in the water sensitivity indexes of harvest index at the vegetative, flowering, and reproductive stages, as the planting density increased. In addition, the normalized water productivity showed a unimodal change with first increased and then decreased with the increasing cumulative normalized crop transpiration. By contrast, the maximum of the normalized water productivity decreased with the increasing planting density, whereas, there was an increase in the corresponding cumulative normalized crop transpiration. The validation results showed that the modified AquaCrop-KR underestimated the grain yield by 5%, compared with the measurements, with the determination coefficient, relative root mean square error, average relative error, modeling efficiency, and agreement index were 0.87, 0.079, 0.057, 0.750, and 0.942, respectively. It infers that the modified model can be used to simulate the grain yield of hybrid maize. This finding can also provide a theoretical reference to predict the crop yield under different water regimes and planting densities.

       

    /

    返回文章
    返回