张银平, 迟岩杰, 王占滨, 李晓冉, 李洪文, 刁培松. 麦-玉两熟区组合耕作模式周期生产力综合评价[J]. 农业工程学报, 2020, 36(16): 35-43. DOI: 10.11975/j.issn.1002-6819.2020.16.005
    引用本文: 张银平, 迟岩杰, 王占滨, 李晓冉, 李洪文, 刁培松. 麦-玉两熟区组合耕作模式周期生产力综合评价[J]. 农业工程学报, 2020, 36(16): 35-43. DOI: 10.11975/j.issn.1002-6819.2020.16.005
    Zhang Yinping, Chi Yanjie, Wang Zhanbin, Li XiaoRan, Li Hongwen, Diao Peisong. Comprehensive evaluation of periodic productivity of combined tillage mode in wheat-maize double cropping areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 35-43. DOI: 10.11975/j.issn.1002-6819.2020.16.005
    Citation: Zhang Yinping, Chi Yanjie, Wang Zhanbin, Li XiaoRan, Li Hongwen, Diao Peisong. Comprehensive evaluation of periodic productivity of combined tillage mode in wheat-maize double cropping areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 35-43. DOI: 10.11975/j.issn.1002-6819.2020.16.005

    麦-玉两熟区组合耕作模式周期生产力综合评价

    Comprehensive evaluation of periodic productivity of combined tillage mode in wheat-maize double cropping areas

    • 摘要: 针对黄淮海两熟区传统精耕细作存在的土壤结构破坏、动力消耗过大和连续免耕存在耕层土壤紧实度增加、表层杂草养分富集等问题,该研究设计了4 a的"翻耕-免耕-深松-免耕"的组合耕作模式(Combine Tillage,CT),通过4 a的周期定位试验,以连续免耕(Continuous No-tillage,CN)和连续翻耕(Continuous Plouging,CP)为对照,运用综合评价法,对组合耕作模式的周期生产力进行综合评价,结果表明:土壤质量方面,CT处理可以提高土壤的结构质量,减小土壤容重,有效降低0~30 cm土层土壤容重,平均容重比连续免耕和连续翻耕分别小0.089和0.125 g/cm3;CT处理提高土壤养分质量,增加0~30 cm土层全氮、速效磷和速效钾含量,对碱解氮含量影响不显著,增加土壤有机碳含量,平均有机碳含量比CN处理和CP处理分别高0.36 和0.61 g/kg,并且各层之间有机碳含量分布较均匀;CP处理破坏0~20 cm土壤结构,在20~30 cm 土层形成犁底层,增加土壤容重,并且只增加10~20 cm土层有机碳含量,各层养分不均;CN处理虽未对土壤结构造成破坏,但只增加0~10 cm土层有机碳含量,使土壤养分在表层积累。投入产出方面,CT处理周期总投入与CN处理差异不显著,两者均显著低于CP处理,但CT处理粮食总产量和总产值显著高于CN处理和CP处理,组合耕作能够提高物质利用率、劳动生产率和产投比,节本增效显著。CT、CN和CP的周期生产力综合评价得分分别为4.85、3.8和1.7,CT处理得分显著高于CN处理和CP处理,说明组合耕作具有较高的周期生产力。该研究可为小麦-玉米两熟区耕作模式的优化提供参考,促进两熟区的生产力提升和节本增效。

       

      Abstract: Abstract: Aiming at the problems of traditional tillage in Huang-Huai-Hai double cropping area, such as soil structure destruction, excessive power consumption, increase of soil compaction and the nutrient enrichment of surface weeds in the surface soil layer resulted by continuous no tillage, the four years combined tillage(CT) from 2013 to 2016 of "ploughing-no tillage-subsoiling-no tillage" was designed in the wheat-corn double cropping area in this study, taking continuous no tillage (CN) and continuous ploughing(CP) as control, the comprehensive evaluation method was used to evaluate the cycle productivity of the combined tillage mode. During the experiment, the soil structure indexes and soil nutrient indexes were measured, and the agricultural materials, machinery, labor cost and crop yields of different tillage modes were statistically analyzed. On this basis, the comprehensive evaluation method was used to evaluate the periodic productivity of different tillage modes. The results showed that, the CT improved the quality of soil structure, reduced the soil bulk density in 0-30 cm soil layer effectively, the average soil bulk density was smaller 0.089 and 0.125 g/cm3 than that of CN and CP. CT increased the content of total nitrogen, rapid available phosphorus and rapid available potassium in 0-30 cm soil layer, but no significant impacts on the available nitrogen content, the organic carbon content was higher 0.36 and 0.61 g/kg respectively than that of CN and CP, the organic carbon concentration distribution was balanced between the soil layers of 0-10, >10-20 and >20-30 cm, but not balanced of CN and CP. CN only increased the soil nutrient in 0-10 cm soil layer, while CT increased the soil nutrient in >10-20 cm soil layer. CT and CN reduced the costs and increased the input, the total investment of CT and CN was not difference significantly, and saved 3 069 and 3 969 yuan/hm2 respectively than that of CP. The total crops yields and total output of CT were significantly higher than that of CN and CP, CT improved the material utilization rate, the labor conversion rate and input-output ratio. The comprehensive evaluation scores of CT, CN and CP were 4.85, 3.8 and 1.7, respectively, the score of CT was significantly higher than that of CN and CP, the periodic productivity of CT was the highest. This study can provide a reference for the improvement of tillage modes in wheat-corn double cropping area, and promote productivity improvement and cost saving.

       

    /

    返回文章
    返回