刘焕军, 张美薇, 杨昊轩, 张新乐, 孟祥添, 李厚萱, 唐海涛. 多光谱遥感结合随机森林算法反演耕作土壤有机质含量[J]. 农业工程学报, 2020, 36(10): 134-140. DOI: 10.11975/j.issn.1002-6819.2020.10.016
    引用本文: 刘焕军, 张美薇, 杨昊轩, 张新乐, 孟祥添, 李厚萱, 唐海涛. 多光谱遥感结合随机森林算法反演耕作土壤有机质含量[J]. 农业工程学报, 2020, 36(10): 134-140. DOI: 10.11975/j.issn.1002-6819.2020.10.016
    Liu Huanjun, Zhang Meiwei, Yang Haoxuan, Zhang Xinle, Meng Xiangtian, Li Houxuan, Tang Haitao. Invertion of cultivated soil organic matter content combining multi-spectral remote sensing and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 134-140. DOI: 10.11975/j.issn.1002-6819.2020.10.016
    Citation: Liu Huanjun, Zhang Meiwei, Yang Haoxuan, Zhang Xinle, Meng Xiangtian, Li Houxuan, Tang Haitao. Invertion of cultivated soil organic matter content combining multi-spectral remote sensing and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 134-140. DOI: 10.11975/j.issn.1002-6819.2020.10.016

    多光谱遥感结合随机森林算法反演耕作土壤有机质含量

    Invertion of cultivated soil organic matter content combining multi-spectral remote sensing and random forest algorithm

    • 摘要: 土壤有机质(Soil Organic Matter,SOM)遥感反演一般以单期影像作为输入量,为研究多时相影像遥感结合随机森林提高SOM遥感反演精度的可能性,该研究以黑龙江省农垦总局胜利农场耕地范围为研究区,以Sentinel-2A和Landsat 8影像作为数据源,获取两期裸土遥感影像,构建光谱指数,以随机森林算法筛选波段和光谱指数作为输入量,构建SOM反演模型。结果表明:1)两期影像的SOM反射光谱响应波段包括二者共有的中心波长:约560、660、850 nm,以及Sentinel-2A特有的中心波长740 nm 4个波段;2)基于单期影像最佳波段和光谱指数,Sentinel-2A影像SOM最优反演模型R2为0.913,均方根误差为0.860 g/kg,精度高于Landsat 8影像反演模型;3)单期影像最佳波段引入光谱指数,相比以最佳波段作为输入量,使SOM最优反演模型的均方根误差分别提高了28.867%和8.722%;4)引入时相信息,基于单期和两期影像波段和光谱指数,SOM最优反演模型精度由高到低为两期影像(R2为0.938,均方根误差1.329 g/kg)、Sentinel-2A影像(R2为0.935,均方根误差为1.944 g/kg)、Landsat 8影像(R2为0.922,均方根误差2.022 g/kg),两期影像SOM最优反演模型的稳定性和精度略高于单期影像。研究结果证明了Sentinel-2A影像数据以及多时相裸土影像反演SOM的优势。

       

      Abstract: Soil organic matter (SOM) inversion based on remote sensing generally uses single-date images as input. In order to explore the possibility of multi-spectral remote sensing with random forest to improve the accuracy of SOM inversion, this study was carried out in the cultivated land of Shengli Farm in Heilongjiang Province (133°34′-134°09′E, 47°13′-47°32′N). The Sentinel-2A and Landsat 8 images from the bare soil period were chosen as the main data sources, and were used for calculating spectral index. Random forest algorithm was used to select spectral bands and spectral index as the input variables and thus to build SOM inversion model. Results showed that: 1) the SOM spectral response band for both Sentinel-2A and Landsat 8 included the central wavelength: about 560, 660, 850 nm, and additional 740 nm of Sentinel-2A; 2) the performance of the optimal SOM inversion model, using predictors of the optimal band and spectral index in the single date from Sentinel-2A image, was well with the R2 of 0.913 and RMSEval (root mean square error for validation data) of 0.860 kg/kg, which presented better results on accuracy and stability than that of Landsat 8 image; 3) the SOM inversion accuracies using the spectral indices from Sentinel-2A and Landsat 8 images were increased by 28.87% and 8.72%, respectively compared to that using the optimal bands as input; 4) the accuracies of the inversion model based on single and double-dates bands and the spectral indices were as following: double-date images (R2 was 0.938, RMSEval was 1.329 kg/kg), Sentinel-2A image (R2 was 0.935, RMSEval was 1.944 kg/kg), Landsat 8 image (R2 was 0.922, RMSEval was 2.022 kg/kg). The stability and accuracy of the SOM optimal inversion model for double-date images was higher than that for single-date image. Red-edge band of Sentinel-2A image provided the optimal band information for the SOM inversion because its wavelength range was within the spectral response wavelength range of SOM, which was beneficial to enhance inversion accuracy. In conclusion, by applying random forest algorithm and remote sensing data and introducing spectral indices into the input, the SOM inversion accuracy could be improved and the predicted SOM map could better characterize the spatial distribution of SOM content. The results of this study proved the advantages of Sentinel-2A images and multi-temporal images in the bare soil period for SOM inversion, and can provide effective methods for improving the precision of remote sensing inversion model of soil physical and chemical parameters such as SOM.

       

    /

    返回文章
    返回