刘淑珍, 高伟达, 任图生. 利用最小水分限制范围评价东北黑土区免耕和垄作的土壤水分稳定性[J]. 农业工程学报, 2020, 36(10): 107-115. DOI: 10.11975/j.issn.1002-6819.2020.10.013
    引用本文: 刘淑珍, 高伟达, 任图生. 利用最小水分限制范围评价东北黑土区免耕和垄作的土壤水分稳定性[J]. 农业工程学报, 2020, 36(10): 107-115. DOI: 10.11975/j.issn.1002-6819.2020.10.013
    Liu Shuzhen, Gao Weida, Ren Tusheng. Evaluating the stability of black soil water content in Northeast China under no tillage and ridge tillage using least limiting water range[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 107-115. DOI: 10.11975/j.issn.1002-6819.2020.10.013
    Citation: Liu Shuzhen, Gao Weida, Ren Tusheng. Evaluating the stability of black soil water content in Northeast China under no tillage and ridge tillage using least limiting water range[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 107-115. DOI: 10.11975/j.issn.1002-6819.2020.10.013

    利用最小水分限制范围评价东北黑土区免耕和垄作的土壤水分稳定性

    Evaluating the stability of black soil water content in Northeast China under no tillage and ridge tillage using least limiting water range

    • 摘要: 为明确耕作方式对黑土土壤水分稳定性的作用,提高黑土区雨养农业对气候变化的适应性,该研究基于黑土区长期免耕定位试验,利用最小水分限制范围(Least Limiting Water Range, LLWR)评价免耕(NT)和垄作(CT)管理下土壤含水率有效性及其变异特征。结果表明:1)在0~5、>5~10、>10~20和>20~40 cm 4个土层中,NT处理显著降低了>5~10 cm的LLWR,其他3个土层LLWR差异均不显著;2)在平水年(2014)、枯水年(2015)和丰水年(2016),NT管理下作物生育期内0~40 cm平均土壤含水率正常率分别为48%、72%和85%,年间变异系数为0.23;CT的土壤含水率正常率分别为56%、20%和51%,年间变异系数为0.38;3)在丰水年,NT与CT的平均有效储水量差值最小,NT比CT高8.95 mm;在枯水年相差最大,NT的平均有效储水量比CT高13.99 mm。因此,NT管理下土壤水分更稳定地分布在LLWR内,在极端降雨年份(枯水年和丰水年)优势尤其明显。

       

      Abstract: An optimal range of water content in soil plays an important role in the whole season of crop growth, in order to obtain stable yields in rainfed agricultural region. This study aims to investigate the temporal stability of soil water content in black soil under the no tillage (NT) and ridge tillage (CT) modes subjected to different rainfall conditions in Northeast China. The long-term tillage experiment was conducted in 2011 at Jilin Lishu Experimental Station of China Agricultural University. The time domain reflectometer (TDR) probes were installed in the soil depth of 5, 10 20 and 40 cm under NT and CT treatments to monitor the volume dynamics of soil water content. Least Limiting Water Range (LLWR) that calculated from the curves of soil water retention and penetration resistance was used as an indicator to evaluate the temporal variability and the availability of soil water content under three rainfall-type years, including normal year (2014), dry year (2015), and wet year (2016). Moreover, the available water storage of 0-40 cm soil layer was also calculated in two tillage treatments. The normal rate of soil water content was defined as the ratio of the cumulative number of days to the total number of days in each period of corn growth stages, where the soil water content was within LLWR. The mean of geometric means (MGMs) for four stages of corn growth can be calculated to evaluate the normal rate of soil water content during the whole crop growth season. The results indicated that: 1) The values of LLWR ranged from 0.05 to 0.19 cm3/cm3 in both tillage treatment. In the 5-10 cm soil layer, the LLWR in NT treatment was significantly smaller than that in CT treatment. There was no significant difference observed in the soil layers of 0-5, 10-20 and 20-40 cm in two tillage treatment. 2) Lower normal rate of soil water content occurred mainly in the 10-40 cm soil layer under both tillage treatments. During the whole growth season, the MGMs of 0-40 cm profile under NT treatment were 48%, 72% and 85% in normal, dry and wet year, respectively, with the coefficient of variance (CV) of 0.23. In CT treatment, the MGMs were 56%, 20% and 51% in normal, dry, and wet year, respectively, with the CV of 0.38. 3) Higher mean available water storage can be obtained in the soil layer of 0-40 cm after NT treatment than that of CT. In the 0-40 cm layer, the difference in available soil water storage between NT and CT was minimum in 2016 (wet year), where that of NT was 8.95 mm higher than that of CT. The maximum difference occurred in 2015 (dry year), where that of NT was 13.99 mm higher than that of CT. The soil water content under NT treatment was more stable within the LLWR than that under CT treatment, especially in the extreme weather conditions, such as dry and wet year. It infers that there is a relatively low risk of water limitation condition for the crops under NT treatment in the black soil in Northeast China, when climate change in future. This finding can provide a field management strategy to obtain a stable crop production in Northeast China.

       

    /

    返回文章
    返回