李玉环, 杨丽, 张东兴, 崔涛, 张凯良, 解春季, 杨瑞梅. 气吸式玉米高速精量排种器直线投种过程分析与试验[J]. 农业工程学报, 2020, 36(9): 26-35. DOI: 10.11975/j.issn.1002-6819.2020.09.003
    引用本文: 李玉环, 杨丽, 张东兴, 崔涛, 张凯良, 解春季, 杨瑞梅. 气吸式玉米高速精量排种器直线投种过程分析与试验[J]. 农业工程学报, 2020, 36(9): 26-35. DOI: 10.11975/j.issn.1002-6819.2020.09.003
    Li Yuhuan, Yang Li, Zhang Dongxing, Cui Tao, Zhang Kailiang, Xie Chunji, Yang Ruimei. Analysis and test of linear seeding process of maize high speed precision metering device with air suction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 26-35. DOI: 10.11975/j.issn.1002-6819.2020.09.003
    Citation: Li Yuhuan, Yang Li, Zhang Dongxing, Cui Tao, Zhang Kailiang, Xie Chunji, Yang Ruimei. Analysis and test of linear seeding process of maize high speed precision metering device with air suction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 26-35. DOI: 10.11975/j.issn.1002-6819.2020.09.003

    气吸式玉米高速精量排种器直线投种过程分析与试验

    Analysis and test of linear seeding process of maize high speed precision metering device with air suction

    • 摘要: 为解决气吸式玉米精量排种器在高速作业条件下投种过程种子与导种管碰撞异位造成排种粒距合格率下降和排种粒距变异系数增大的问题,该文提出了一种利用推种装置配合种盘吸孔实现直线投种的方法,并对直线投种原理进行分析,阐明直线投种过程中种子与排种器的运动和力学关系,明确种盘吸孔曲线方程,确定了推种装置结构曲线参数方程。选取投种位置和作业速度为主要因素进行全因素试验,对试验结果进行显著性分析,确定了因素与指标的回归方程,以排种粒距合格率、漏播率以及排种粒距变异系数为寻优条件,确定较优的投种位置为直线推种区角度=15°,直线落种角度=21°,并进行验证试验。试验结果表明,作业速度12 km/h时,排种粒距合格率为98.68%,漏播率为0.69%,排种粒距变异系数为15.03%,与理论优化结果基本一致。进行了直线投种方式与原有阻气投种方式的对比试验,结果表明,各个作业速度下排种器性能指标均有所提升,且提升幅度随着作业速度的提高而增大,在作业速度14 km/h时,直线投种较原有阻气投种排种粒距合格率提高4.22个百分点,漏播率降低4.20个百分点,排种粒距变异系数降低4.55个百分点,采用直线投种方式可大大改善播种效果,提高作业速度。

       

      Abstract: Abstract: In order to solve the problems that the seed and seed tube collision may reduce the qualified seeding rate and increase the coefficient of variation during the seeding process of the air suction precision maize seed metering device at high working speed, a method of seed throwing in a straight line by using linear seeds pushing device and suction hole of seed plate was presented in this paper. The linear seeds throwing process included three stages. Firstly, seeds attached to the seed plate steadily move in a circle with the seed plate during the range of transition area. Secondly, the seeds moved straight down at an absolute velocity with the seeds linear pushing device during the range of linear pushing area. Finally, seeds entered into the range of linear falling area and accelerated straight down, and then entered the seed tube, the seeds in the seed tube evenly and orderly dropped into the seed ditch. The principle of seed falling in a straight line was analyzed, the motion and mechanical relationships between the seeds and the air suction precision maize seed metering device during the seeds linear falling process were explained, the curve equation of suction hole of seed plate was defined, the structural curve equation of the seed pushing device was determined. In order to explore the effects of seed feeding position and working speed on the seed metering performance of seed metering device, the whole factor test was carried out with the seed feeding position and working speed as the influencing factors, and with the qualified rate of seeding spacing, the missing seeding rate and the coefficient of variation of seeding spacing as the test indexes. In addition, the significance of the test results was analyzed, and the regression equations of each factor and test indexes were determined. The maize seeds of Zhengdan 958 were used as objects of indoor bench test. The results showed that the optimal seed feeding position was that the angle of the linear seed pushing area was 15°and the angle of linear seed falling area was 21°. The verification test results showed that the qualified seeding spacing rate was 98.68%, the missing seeding rate was 0.69%, and the coefficient of variation of seeding spacing was 15.03% at the working speed of 12 km/h, which was consistent with the theoretical optimization results. The comparison tests were conducted between the linear seeding and the ordinary choke seeding. The results showed that all the indexes improved at all working speed on the basis of meeting the national standard requirements. With the working speed increased, the improvement effect became better. At the working speed of 14 km/h, compared with the ordinary choke seeding, the qualified rate of seeding spacing was increased by 4.22 percentage points, the missing seeding rate was reduced by 4.20 percentage points, and the coefficient of variation of seeding spacing was reduced by 4.55 percentage points, which indicated that the linear seeding could effectively improve the seeding effects at high working speed The results of adaptability tests showed that the seeding performance of Xianyu 335, Denghai 605 and Jingnongke 728 was lower than that of Zhengdan 958, but the qualified rate of seeding spacing was higher than 96.5%, the missing seeding rate was lower than 1.8%, and the coefficient of variation of seeding spacing was lower than 17.7%, which still met the requirements of the precision sowing.

       

    /

    返回文章
    返回