童宝宏, 杨文, 刘庆运, 叶小华, 时礼平. 柱塞泵螺旋沟槽式柱塞-铜套副缝隙流场流动与均压特性[J]. 农业工程学报, 2018, 34(2): 55-63. DOI: 10.11975/j.issn.1002-6819.2018.02.008
    引用本文: 童宝宏, 杨文, 刘庆运, 叶小华, 时礼平. 柱塞泵螺旋沟槽式柱塞-铜套副缝隙流场流动与均压特性[J]. 农业工程学报, 2018, 34(2): 55-63. DOI: 10.11975/j.issn.1002-6819.2018.02.008
    Tong Baohong, Yang Wen, Liu Qingyun, Ye Xiaohua, Shi Liping. Flowing and pressure-balancing characteristics of clearance field in helical grooved piston-copper sleeve pair of piston pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 55-63. DOI: 10.11975/j.issn.1002-6819.2018.02.008
    Citation: Tong Baohong, Yang Wen, Liu Qingyun, Ye Xiaohua, Shi Liping. Flowing and pressure-balancing characteristics of clearance field in helical grooved piston-copper sleeve pair of piston pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 55-63. DOI: 10.11975/j.issn.1002-6819.2018.02.008

    柱塞泵螺旋沟槽式柱塞-铜套副缝隙流场流动与均压特性

    Flowing and pressure-balancing characteristics of clearance field in helical grooved piston-copper sleeve pair of piston pump

    • 摘要: 为考察螺旋沟槽结构对柱塞-铜套副缝隙流动和均压特性的影响,该文结合某型斜盘柱塞泵实际结构组成,采用计算流体力学方法,对螺旋沟槽式柱塞-铜套摩擦副在不同工况下的缝隙流场进行了数值仿真,分析比较了6种不同表面结构柱塞-铜套副的油膜压力分布、倾斜力矩大小和缝隙流动特性变化情况,并利用理论计算和试验方法对仿真结果进行了检验。结论表明,螺旋沟槽结构使缝隙油膜压力更加均匀稳定,柱塞最大倾斜力矩和倾斜力矩变化幅度减小。当柱塞泵转速为1 000 r/min,柱塞位置为90°时,与无沟槽柱塞相比,螺旋沟槽式柱塞-铜套副在轴向位置25 mm处圆周向压力变化幅度减小了24.05%~55.77%,柱塞最大倾斜力矩减小了49.01%~103.14%。各种螺旋沟槽结构中,单圈螺旋沟槽起点与柱塞端面的距离增加,沟槽均压作用增强;相对于单圈沟槽,多圈螺旋沟槽更有利于提升摩擦副压力分布的均匀性和稳定性,均压作用更加明显。螺旋沟槽结构的导流作用降低了摩擦副中油液的流动阻力,使油液分布更加均匀,改善了摩擦副的均压润滑特性。但在高压低速时,泄漏量将增加22.73%~267.53%,降低了摩擦副的密封性。此外,螺旋沟槽式柱塞-铜套副中沟槽深度与压差流大小成正比,根据需要合理地设计螺旋沟槽,有利于提升摩擦副的工作性能。该研究可为螺旋沟槽式柱塞-铜套副的密封与均压性能协同优化设计提供参考。

       

      Abstract: Abstract: In order to investigate the effect of helical grooved structure on the clearance flow and pressure balancing characteristics of the piston - copper sleeve pair, the flow field numerical simulation of pair was carried out by using the computational fluid dynamics method. Combined with the actual structure of a specific type of swashplate pump, 6 kinds of pistons were designed with different surface structures distinguished from length and location of helical groove. At different rotate velocity, oil supply pressure, piston location, oil film pressure distribution, tilting torque size and clearance flow characteristics of 6 kinds of piston-copper sleeve pairs were analyzed and compared. The results showed that the oil film pressure distribution of helical grooved piston - copper sleeve pairs became more uniform and stable due to the effect of helical groove, and the maximum value and rangeability of tilting torque decreased observably. Specifically, when the rotating speed was 1000 r/min and the plunger position was 90°, relative to the non-grooved plunger, their change amplitude of circumferential pressure decreased by 24.05%-55.77% at axial position of 25 mm, and the maximum tilting torque reduced by 49.01%-103.14%. In all groove design proposals, compared to the single-turn circle groove, oil film pressure distribution of single-ring helical groove was more conducive to piston's stable work. Then, pressure balancing characteristic of the single-ring helical groove would be more effective as the distance between the starting point of groove and the end face of the piston increased. Furthermore, compared to the single-ring helical groove, multi-ring helical groove possessed superior balance pressure characteristics. Especially, when multi-ring helical groove was arranged continuously, the uniformity and stability of oil film would be enhanced further. In addition, the pressure balancing effect of the helical grooved structure could reduce the flow resistance of the oil in the clearance, and was good for the oil to fill the whole clearance, so the characteristics of pressure balance and lubrication would be promoted. But the sealability of piston - copper sleeve pair would be worse and the leakage would be increased by 22.73%-267.53% in the condition of high pressure and low speed. The design scheme of the three-ring helical groove obviously improved the pressure lubrication characteristics, but it seriously affected the sealing of the piston pair, which did not satisfy the working requirement of the piston pump. The size of the pressure flow in clearance increased with the depth of the groove, and the increasing speed gradually elevated before the depth reached 0.9 mm, and then the linear change rule appeared after it. Meanwhile, the flow characteristics of the helical groove were also changed with the depth of the groove. Therefore, by selecting groove size reasonably, lubrication and leakage could be controlled, which was helpful to improve piston work quality. Moreover, a method combining dynamic and static conditions was proposed in this study for proving the rationality of the numerical simulation. On the one hand, a theoretical formula was used to calculate the flow rate of concentric annular clearance at different piston velocities, and the result was compared with the flow rate obtained by the dynamic numerical simulation. On the other hand, the measurement test of clearance flow of the helical grooved piston in the static state was carried out to verify the rationality of specific helical grooved piston's numerical simulation. Probative results showed that simulation method accorded with the need of research rationality. Firstly, the calculation results of formula were in good agreement with the simulation. Then, the value difference of simulation and test was relatively large, but the change trends in comparison were consistent. The study was aimed at providing a reference for the helical grooved piston design that synthetically considered the tightness and pressure uniformity. And the groove type piston was expected to obtain good lubrication characteristics while the leakage dose did not affect the piston pump work efficiency. To promote the practical application of the helical groove type piston, the relevant research of dynamic test method and platform needs to be further performed.

       

    /

    返回文章
    返回