王志超, 李仙岳, 史海滨, 丁宗江, 张景俊, 郭 宇, 王美荣. 覆膜年限及灌水方法对河套灌区农膜残留的影响[J]. 农业工程学报, 2017, 33(14): 159-165. DOI: 10.11975/j.issn.1002-6819.2017.14.022
    引用本文: 王志超, 李仙岳, 史海滨, 丁宗江, 张景俊, 郭 宇, 王美荣. 覆膜年限及灌水方法对河套灌区农膜残留的影响[J]. 农业工程学报, 2017, 33(14): 159-165. DOI: 10.11975/j.issn.1002-6819.2017.14.022
    Wang Zhichao, Li Xianyue, Shi Haibin, Ding Zongjiang, Zhang Jingjun, Guo Yu, Wang Meirong. Effects of mulching years and irrigation methods on residual plastic film in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 159-165. DOI: 10.11975/j.issn.1002-6819.2017.14.022
    Citation: Wang Zhichao, Li Xianyue, Shi Haibin, Ding Zongjiang, Zhang Jingjun, Guo Yu, Wang Meirong. Effects of mulching years and irrigation methods on residual plastic film in Hetao Irrigation District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 159-165. DOI: 10.11975/j.issn.1002-6819.2017.14.022

    覆膜年限及灌水方法对河套灌区农膜残留的影响

    Effects of mulching years and irrigation methods on residual plastic film in Hetao Irrigation District

    • 摘要: 为阐明内蒙古河套灌区农膜残留现状及覆膜年限、灌水方法对农膜残留的影响,该文采用查阅资料、问卷调研及田间取样等相结合的方法,分析了内蒙古河套灌区及典型研究区地膜覆盖现状,并在典型研究区考虑了覆膜年限(覆膜2、5、10、20 a)、灌水方法(膜下滴灌和地面灌溉覆膜)和作物种类(玉米和葵花)3个因子,探索其对农膜残留强度、破碎率、残膜分布及残膜碎片大小的影响。结果表明:内蒙古河套灌区2005-2014年地膜使用量和覆膜面积均呈跨越式增长,分别增长了125.81%和147.62%;而典型研究区更是增长了240%和265.81%,然而单位面积覆膜量却下降了8.82%和7.08%。不同覆膜年限和灌水方法显著影响农膜残留强度和破碎率(P<0.05),其中覆膜5、10、20 a后的残留强度平均比覆膜2 a分别增长了80.14%、163.70%、273.64%,破碎率平均比覆膜2 a分别增长了20.97%、38.14%、60.20%;膜下滴灌与地面灌溉覆膜相比残留强度平均提高了42.92%,破碎率平均提高了20.01%。农膜残留主要集中在土壤0~10 cm土层内,占64.89%;典型研究区面积为0~4和>4~20 cm2的残膜分别占残膜总片数的31.06%和27.81%,且随着覆膜年限增加,下层残膜片数占总残膜片数的比例逐渐增加,其中覆膜20 a农田与覆膜2 a农田相比0~10 cm土层残膜占总残膜片数由71.47%降低为54.61%,>10~20 cm土层由23.37%升高为32.24%,而不同灌水方式对残膜在土壤中的分布影响不大。随着覆膜年限的增加土壤中不同面积残膜比例差异越显著且小面积残膜比例增加,覆膜2~20 a后,面积为20 cm2以下的残膜数量分别是面积为20 cm2以上的1.43~1.59倍(P<0.05)。研究结果可为农膜残留防治提供参考。

       

      Abstract: Abstract: In order to study the influence of mulching years and irrigation methods on residual plastic film in Hetao Irrigation District of Inner Mongolia, consultation, questionnaire investigation and field sampling were used in combination for in-depth study. This paper mainly analyzed the present situation of plastic film mulching in Hetao Irrigation District and the typical research area (Dengkou County), and studied the effects of 3 factors including mulching years (2 years, 5 years, 10 years and 20 years), irrigation methods (drip irrigation and surface irrigation under film mulching) and crops (maize and sunflower). And the effect on the film residual rate, film damage rate, distribution of residual film in soil and residual film area in the typical research area were mainly discussed. The results showed that as the drip irrigation technology had made great development in Hetao Irrigation District of Inner Mongolia, the amount and mulching area of plastic film in Hetao Irrigation District increased by 125.81% and 147.62% respectively in recent 10 years. The typical research area even increased by 240% and 265.81%, however, the mulching area per unit area decreased by 8.82% and 7.08%. And this may lead to a further increase in the amount of agricultural film residue. Different mulching years and irrigation methods affected the film residual rate and film damage rate significantly (P<0.05), and the film residual rate and film damage rate under the drip irrigation were significantly higher than those of surface irrigation. The film residual rate of mulching 5 years, 10 years and 20 years increased by 80.14%, 163.70%, 273.64% than mulching 2 years respectively on average, and for film damage rate it increased by 20.97%, 38.14%, 60.20% than mulching 2 years on average. Moreover, the film residual rate and film damage rate under drip irrigation increased by 42.92% and 20.01% on average compared with surface irrigation. There was no significant difference in film residual rate and film damage rate between maize and sunflower under the same film mulching years and irrigation method. The film mulching years greatly affected the distribution of the residual film in soil, and the different irrigation methods had few effects on the distribution of residual plastic film in soil. The residual plastic film mainly concentrated in the soil depth of 0-10 cm, which accounting for 64.89%; and the residual film area between 0-4 cm2 and 4-20 cm2 was 31.06% and 27.81% of the total slices in the farmland. With the increase of mulching years, the total slices of residual film residues in the deeper soil depth gradually increased. For example, the residual film slice in soil depth of 0-10 cm was reduced from 71.47% to 54.61% for the mulching years from 20 to 2, but the residual film in soil depth of 10-20 cm was increased from 23.37% to 32.24%. With the increase of mulching years, the proportion of residual film for different area was more significant, especially for the increase of small area of residual film. The amount of residual film for area below 20 cm2 was 1.43, 1.44, 1.51, 1.59 times than the residual film area more than 20 cm2 (P<0.05) for the mulching years of 20 years, 10 years, 5 years and 2 years, respectively. The percentage of residual film in the residual film area of 0-50 cm2 under drip irrigation was significantly higher by 1.82% 4.15%, 8.08% and 9.14% than under surface irrigation (P<0.05) for the mulching years of 2 years, 5 years, 10 years and 20 years, respectively. The results can provide valuable information for the prevention and control of agricultural plastic film residues.

       

    /

    返回文章
    返回