张建阔, 李加念, 吴 昊, 马泽宇, Waleed Elnour Babekir Salih, 胡赫谌. 基于双吸肥口的低压文丘里施肥器设计与试验[J]. 农业工程学报, 2017, 33(14): 115-121. DOI: 10.11975/j.issn.1002-6819.2017.14.016
    引用本文: 张建阔, 李加念, 吴 昊, 马泽宇, Waleed Elnour Babekir Salih, 胡赫谌. 基于双吸肥口的低压文丘里施肥器设计与试验[J]. 农业工程学报, 2017, 33(14): 115-121. DOI: 10.11975/j.issn.1002-6819.2017.14.016
    Zhang Jiankuo, Li Jianian, Wu Hao, Ma Zeyu, Waleed Elnour Babekir Salih, Hu Hechen. Design and experiment of low pressure Venturi injector based on double fertilizer inlets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 115-121. DOI: 10.11975/j.issn.1002-6819.2017.14.016
    Citation: Zhang Jiankuo, Li Jianian, Wu Hao, Ma Zeyu, Waleed Elnour Babekir Salih, Hu Hechen. Design and experiment of low pressure Venturi injector based on double fertilizer inlets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 115-121. DOI: 10.11975/j.issn.1002-6819.2017.14.016

    基于双吸肥口的低压文丘里施肥器设计与试验

    Design and experiment of low pressure Venturi injector based on double fertilizer inlets

    • 摘要: 为降低文丘里施肥器的吸肥临界进口压力,使之适用于低压灌溉施肥系统,设计了一种双吸肥口文丘里施肥器。选取喉管收缩比、收缩段角度、扩散段角度和喉管长径比4个结构参数,采用正交试验设计方法,构建16种结构参数组合方案,运用CFD模拟技术对每种方案的吸肥性能进行模拟,以吸肥性能为评价指标确定最佳结构参数组合,并根据最佳结构参数组合试制文丘里施肥器原型样品,并在0~0.15 MPa进口压力范围内对其吸肥性能进行分析。结果表明,最佳结果参数为:喉管收缩比为0.3、收缩段角度为20?、扩散段角度为8°、喉管长径比为1.1。最佳结构文丘里施肥器试制样品实测结果与模拟分析结果一致,在相同进口压力下各个实测值均略小于模拟分析值,实测与模拟吸肥量、进口流量比、肥液浓度和吸肥效率的均方根误差分别为0.22 L/min、0.96%、0.93%和0.68%。在相同进口压力下,相比于相同结构参数的单吸肥口文丘里施肥器,模拟得出的吸肥量提高了90%,进口流量比提高了85%,肥液浓度提高了80%,吸肥效率提高了80%,表明双吸肥口施肥器的吸肥性能比单吸肥口施肥器有较大提高;双吸肥口施肥器实测临界进口压力为0.007 MPa,当进口压力为0.05 MPa时其吸肥浓度可达13.6%,与现有文丘里施肥器相比,在获得同等或更高的吸肥性能时具有更低的工作进口压力,更适用于低压滴灌系统。

       

      Abstract: Abstract: Venturi injector has been widely used in the integrated irrigation system of water and fertilizer because of its advantages of low cost, simple structure, no external power and so on. In order to reduce the critical inlet pressure of the Venturi injector and make it suitable for low pressure irrigation and fertilization system, a kind of Venturi injector with double fertilizer inlets was designed. The design was based on the study results that increasing the numbers of fertilizer inlets can improve fertilizer absorption capability of Venturi tube. A total of 4 structural parameters (throat contraction ratio, contraction angle, diffusion angle and ratio of throat length and diameter) were required to be determined for the Venturi injector. A total of 16 combinations with the 4 structural parameters were designed by using the orthogonal method. The CFD simulation was used to simulate the fertilizer absorption performance of each scheme. According to the simulation results, the optimum combination of structural parameters was throat contraction ratio 0.3, contraction angle 20o, diffusion angle 8o and ratio of throat length and diameter 1.1. According to the optimum combination of structural parameters, a prototype of Venturi injector was manufactured by the 3D print technique for an experiment. The experiment was carried out in College of Modern Agricultural Engineering of Kunming University of Science and Technology, China. The water inlet pressure from 0 to 0.15 MPa was realized by adjusting the difference in height between the bucket and the Venturi injector and there were 8 points chosen from 0 to 0.15 MPa. The vertical distance between the liquid level and the fertilizer inlets was set to 500 mm. During the experiment, the fertilizer concentration was calculated. The experimental results showed that the measured values agreed well with the simulated values with the root-mean-square error of 0.22 L/min for fertilizer suction amount, 0.96% for flow ratio of inlet, 0.93% for fertilizer concentration, and 0.68% for fertilizer absorption efficiency. The change in measured and simulated fertilizer absorption performance with the inlet pressure was similar. The CFD simulation was used for compare single and double inlets injector with the same structural parameters and the results showed that under the same inlet pressure, fertilizer suction amount, flow ratio of inlet, fertilizer concentration and fertilizer absorption efficiency of the double inlets increased by 90%, 85%, 80% and 80%, respectively, compared to single fertilizer inlet. The measured critical inlet pressure was 0.007 MPa for the double inlets injector. When the inlet pressure was 0.05 MPa, the fertilizer concentration was 13.6%. Compared with the existing Venturi injector, the Venturi injector with double fertilizer inlets need much lower water inlet pressure to obtain the equal or higher fertilizer absorption performance and it is more suitable for low pressure irrigation system.

       

    /

    返回文章
    返回