基于太赫兹时域光谱技术的掺假川贝母检测

    Detection of adulterated fritillariae using terahertz time domain spectroscopy

    • 摘要: 目前川贝母粉掺假现象层出不穷,严重影响了中药材市场的健康发展,因此对川贝母真伪进行检测意义重大。该研究以纯品川贝母粉以及5种含不同掺假物的川贝母粉样品为研究对象,探究太赫兹时域光谱技术在检测川贝母品质方面应用的可行性。利用偏最小二乘判别(Partial Least Squares Discriminant Analysis,PLS-DA)对纯品川贝母粉以及掺假川贝母粉建立原始光谱的二分类模型。为了同时对多种含不同掺假物的川贝母样品进行鉴别,先对原始光谱采用多种单一预处理方法以及多种复合预处理方法进行处理,再利用主成分分析(Principal Component Analysis,PCA)对数据进行降维,最后建立支持向量机(Support Vector Machine,SVM)多分类模型。建立SVM多分类模型时,采用网格搜索(Grid Search)与粒子群(Particle Swarm Optimization,PSO)算法两种参数优化方式,对SVM的惩罚参数(c)与核参数(g)进行优化。结果显示:6个二分类模型的鉴别正确率均为100%,表明纯品川贝母粉与掺假样品的太赫兹时域光谱存在差异,归一化-多元散射校正-PSO-SVM多分类模型效果较为理想,预测正确为95.67%,均方根误差为0.432。该研究可为检测分析川贝母品质提供理论经验借鉴。

       

      Abstract: Unibract fritillary bulb, a traditional precious Chinese medicinal material, has the effects of clearing away heat, moisturizing the lungs, reducing phlegm, and relieving cough. However, the adulteration of Unibract fritillary bulbs has posed a serious threat to the medicinal effect and the healthy development of the market in recent years. Therefore, it is of great significance to accurately and rapidly detect the adulterated Unibract fritillary bulb powder. In this study, a systematic detection was conducted to distinguish the adulterated fritillariae using terahertz time-domain spectroscopy. Five samples of Fritillaria powder were used as the research objects, containing different adulterants (rice flour, Kudzuvine root powder, sweet potato powder, wheat flour, and Fritillaria Ussuriensis Maxim powder), pure Unibract fritillary bulb powder as the control group. Chemometric methods were also selected to detect the quality of Unibract fritillary bulb. The specific procedure was as follows. Firstly, adulterated samples were prepared with different types of Unibract fritillary bulbs in the same content. Then, the terahertz time-domain spectra were collected. Partial Least Squares Discriminant Analysis (PLS-DA) was also used in the range of 0.5-3.0 THz, according to the original and five adulterated Fritillaria powders. The original spectrum was used to remove the irrelevant variables and noise using the Savitzky-Golay smoothing (S-G Smoothing), Normalize, and Multiple Scatter Correction (MSC). A two-class model was established using the obtained spectral data. Thirdly, Principal component analysis (PCA) was used to reduce the dimensionality of preprocessed data, while simplifying the calculation of the model. Kennard-Stone (KS) was selected to divide the sample data into a 1:3 ratio, while the spectral data into prediction and modeling set. Finally, a Support Vector Machine (SVM) multi-classification model was established using Grid Search and Particle Swarm Optimization (PSO), where two parameters were optimized, namely, the penalty parameters (c) and the number of cores (g) of SVM. Correspondingly, the recognition accuracy rates of various samples were compared under the optimal spectral preprocessing and parameter optimization. The results showed that six binary classification models for the original spectra presented a correct identification rate of 100%, indicating a high accuracy for the pure Unibract fritillary bulb and adulterated Fritillaria. There were also great differences in the time domain spectra in the terahertz of samples. A multi-classification model was then established using Normalize combined with MSC preprocessing, further optimizing parameters using Particle Swarm Optimization (PSO). The overall accuracy of PSO optimization was higher than that of grid search optimization, where the highest accuracy rate was 100%. The lowest accuracy rate was 90%, and the average prediction accuracy was 95.67%, while the root mean square error was 0.432 when Unibract fritillary bulb powder was mixed with Fritillaria Ussuriensis Maxim powder. Consequently, Terahertz spectroscopy combined with a support vector machine can simultaneously detect a variety of Unibract fritillary bulb powder containing different adulterants. This finding can provide a theoretical experience for the detection of Unibract fritillary bulb adulteration in the field of medicine, thereby ensuring the excellent quality of Chinese medicinal materials in the trading market.

       

    /

    返回文章
    返回