水泥固化砒砂岩强度与孔隙结构演变的灰熵关联分析

    Grey entropy analysis of strength and pore structure evolution of cement-solidified Pisha sandstone

    • 摘要: 为了研究水泥固化砒砂岩孔隙结构生长发育的演变规律以及其对抗压强度的影响,通过孔隙特征参数和孔隙半径预测抗压强度,对不同养护龄期下不同掺量的水泥固化砒砂岩宏观力学性能和微观结构进行测试和分析,采用灰关联熵探讨了水泥固化砒砂岩的孔隙特征参数和孔隙半径对强度的关联程度,并建立孔隙结构与抗压强度的灰色预测模型。结果表明,水泥固化砒砂岩的横向弛豫时间T2谱均呈现"双峰"结构,其孔隙度与束缚流体指数整体上呈负相关,0~0.1 μm范围内的孔隙尺寸占比随水泥掺量的增加先增大后减小,最可几孔径随龄期的增加向小孔径方向移动;水化胶凝产物钙矾石(AFt)和水化硅酸钙(C-S-H)通过膨胀填充和胶结作用改善了试样内部的孔隙结构,致使强度提高;束缚流体指数和0~0.1 μm孔隙半径占比对抗压强度的影响最显著,灰色预测模型GM(1,3)预测精度较高,预测值和试验值的相对误差范围为-10.46%~6.77%。该研究可为松散砒砂岩的改良与固化在实际工程中应用提供参考依据。

       

      Abstract: Abstract: Pisha sandstone is a kind of weakly cemented sandstone with loose structure and low diagenesis. In order to study the evolution of the growth and development of the pore structure of cement-solidified Pisha sandstone and its influence on compressive strength, the samples of cement-solidified Pisha sandstone with cement content of 4%, 7% and 10% were prepared, and their unconfined compressive strength and microscopic morphology were tested. The transverse relaxation time and pore characteristic parameters of samples with different curing ages were tested by nuclear magnetic resonance. According to the relationship between the transverse relaxation time and pore size, the pore radius of the three sets of patterns were converted and divided into four intervals: micro pores (0-0.1 μm), mesopores (>0.1-1 μm), macropores (>1-10 μm), and crack pores (>10 μm). The relationships between pore characteristic parameters and pore radius on strength of cement-solidified Pisha sandstone was analyzed by using the grey correlation entropy method, and the grey prediction model of pore structure and compressive strength was established. The results showed that the compressive strength of cement-solidified Pisha sandstone increased with curing age, and the hydrated gelling products ettringite (AFt) and hydrated calcium silicate (C-S-H) improved the internal pore structure of the sample through expansion filling and cementation. The transverse relaxation time spectrum of cement- solidified Pisha sandstone presented a "double peak" structure. As the curing age increased, the first peak tended to move to the left, but the peak signal amplitude was basically unchanged, the second peak was shifted to the direction of the medium and large apertures and the peak signal volume tended to decrease. After 28 days of hydration reaction, the bound fluid index increased from 63.17% to 64.30%, and the porosity decreased from 30.96% to 28.42%, the porosity and bound fluid index were negatively correlated as a whole. In the process of hydration reaction, the most probable aperture moved to the direction of small pore size, ranging from 67 nm to 47 nm. With the increase of cement content, the proportion of the most probable aperture gradually decreased from 1.976% to 1.821%, the proportion of pore size in the range of 0-0.1 μm increased first and then decreased, but the proportion of pore radius in the range of 0.1-10 μm showed the opposite trend. The bound fluid index and the proportion of the pore radius of 0-0.1 μm had the most significant influence on the compressive strength, the GM (1,3) grey model had the high prediction accuracy, and the relative errors between predictive values and test values ranged -10.46%-6.77%. This study can provide valuable information for the improvement and solidification of loose Pisha sandstone in engineering projects.

       

    /

    返回文章
    返回