秸秆还田施肥点播机粉碎抛撒装置结构设计与优化

    Design and optimization of crushing and throwing device for straw returning to field and fertilizing hill-seeding machine

    • 摘要: 针对小麦秸秆粉碎还田免耕播种过程中出现的堵塞、架种与晾籽问题,该文对秸秆粉碎还田施肥点播机秸秆粉碎抛撒装置结构进行设计,采用理论分析、ADAMS仿真方法对切茬甩刀、切茬定刀、切茬粉碎机构与开沟器配合尺寸等秸秆粉碎抛撒装置关键参数进行设计,通过田间优化试验最终确定开沟器前侧至切茬甩刀水平位置端面距离为2.3 cm,秸秆挡板倾斜角为22°,此时晾籽率最低,为1.65%。作业性能验证试验表明:当整机的粉碎抛撒装置采用设计参数进行作业时,播深合格率为81.3%,秸秆粉碎长度合格率为96.6%,秸秆抛撒范围合格率为90.2%,秸秆抛撒不均匀度为11.9%,均优于标准要求,满足作业要求,试验过程全程无堵塞,点播机切茬粉碎抛撒装置可使秸秆全量还田同时保持机具良好通过性,实现免耕地无残茬播种并完成高质量秸秆粉碎抛撒盖种。本研究可为从秸秆粉碎抛撒角度解决堵塞问题、为免耕播种环境的相关机具研发提供参考。

       

      Abstract: To satisfy the need of stubbles and straws crushing returning to field and no-till seeding, a stubble crushing returning to field and fertilizing hill-seeding machine was designed. The machine could accomplish stubbles and straws crushing and returning to field, precision sowing of large grain crops and side fertilization. In order to avoid the blockage of no-till seeding machine in field and seeds falling on crushed stubbles, the key parameters of crushing and scattering device were designed through theoretical analysis, ADAMS simulation and field experiments. Based on theses, it was determined that the length of swing stubble cutter was 159 mm, the thickness of swing stubble cutter was 7 mm, the width of swing stubble cutter was 68 mm, the included angle of Y-shaped intersection of swing stubble cutter was 120°, the height of Y-shaped intersection of swing stubble cutter was 60 mm, the swing stubble cutter was 30 groups, the lead angle of adjacent swing stubble cutter was 85°, the distance of adjacent swing stubble cutter was 67 mm, the distance of two swing stubble cutter end face to shaft end face was 60.5 mm, the length of fixed stubble cutter was 84 mm, the blade length of fixed stubble cutter was 50 mm, the distance of fixed stubble cutter tail end to Y-shaped point of intersection of fixed stubble cutter was 8 mm, the width of fixed stubble cutter was 76 mm, the installation angle of inclination of fixed stubble cutter was 12°, and the blade angle of inclination of fixed stubble cutter was 56.6°. The simulation experiments confirmed that the ranges of the distance of opener front end to swing stubble cutter horizontal position end face was 2-4 cm and the slope angle of straw baffle was 20°~25°. Further, the field optimization experiments of two factors and three levels was carried out in Yongqiao district, Luling town, Suzhou city, Anhui province. The three levels of the distance of opener front end to swing stubble cutter horizontal position end face were 2, 3 and 4 cm, the three levels of the slope angle of straw baffle were 20°, 22.5° and 25°. The quadratic multiple regression equation of test factors and seed drying rate was obtained by fitting the test results, and variance analysis and response surface analysis were carried out. The results of analysis showed that the distance of opener front end to swing stubble cutter horizontal position end face had greater influence on the seed drying rate than the slope angle of straw baffle. when the distance of opener front end to swing stubble cutter horizontal position end face was 2.3 cm and the slope angle of straw baffle was 22°, the seed drying rate was 1.65%. The verification experiment showed that the machine was not blocked during the working process, the seed drying rate was 1.58%, acceptability of seeding depth was 81.3%, acceptability of straw smashing length was 96.6%, acceptability of straw scattering range was 90.2%, uneven rate of straw scattering was 11.9%, and pure productivity was 0.37 hm2/h, the results of verification experiment was better than the standard requirements. The stubble returning to field and fertilizing hill-seeding machine meet the working quality requirement of stubble smashing spilling returning to field and no-till precision sowing.

       

    /

    返回文章
    返回