主动悬架轮腿式全地形移动机器人俯仰姿态闭环控制

    Pitching attitude closed loop control of wheel-legged all terrain mobile robot with active suspension

    • 摘要: 农业机器人在作业时,不可避免的会出现位姿(质心位置与姿态)的变化。为了实现对其位姿的控制,降低复杂路面对机器人姿态的影响,确保机器人的行驶稳定性,基于汽车多连杆独立悬挂系统,设计了一款轮腿式全地形移动机器人。首先在建立轮腿机器人控制运动学模型的基础上,通过矢量法和欧拉公式得到了1/2整机逆运动学模型,进而求出机身运动俯仰角、作动器工作长度与各腿关节转角的变换关系,并对轮腿机器人的位置和姿态进行解耦控制。为了确保机器人运动学控制模型以及运动学逆解的可靠性,在理论模型的基础上加工了1/4台架并进行了单腿运动学标定与运动学控制验证,结果表明仿真数据与试验数据基本吻合,最大误差控制在1.5%以内。在单腿运动学控制模型正确的基础上,采用比例控制算法在MATLAB中搭建整机轮腿机器人俯仰姿态控制策略,在满足轮腿机器人质心位置不变的条件下实现其俯仰姿态闭环控制;最后在ADAMS中构建轮腿机器人虚拟样机模型,利用MATLAB和ADAMS平台搭建轮腿机器人整机俯仰姿态闭环控制联合仿真模型,仿真结果表明轮腿机器人的俯仰姿态与质心位置均有很好的跟踪效果,其中质心位置误差、姿态误差分别控制在0.2%、2%,结果验证了所述轮腿机器人俯仰姿态闭环控制策略的正确性。

       

      Abstract: With the attention of agricultural robot research and development in recent years, many kinds of agricultural robots have been developed according to the different focus of the problem solving. Because the wheel-legged robots have excellent obstacle surmounting ability, low energy consumption and stable terrain adaptability compared with other mobile platforms, it has been widely used in various fields of precision agriculture, military investigation, resource exploration and so on. The position and attitude will be inevitably changed when the wheel-legged robots in operation, and the working accuracy and working performance will be affected due to the complexity of the working environment. In order to control the position and attitude, reduce the influence of the non paved pavement to the robot's attitude and position, ensure the stability of the robot, a new type of wheel-legged all terrain mobile robot with active suspension was designed in this study based on the multi-link independent suspension system of the vehicle. Multi-link independent suspension had mature application experience in automobile manufacture, but seldom applied in wheel-legged robot. The suspension system was the general name of the device that connected the body and the wheel. It can be roughly divided into the independent suspension system and the dependent suspension system, of which the non independent suspension system referred to the connection between the two wheels, and the pulsation of one side of the wheel affected the beat of the other side, while the wheels in the multi-link independent suspension system had their respective suspension mechanisms, which were independent of each other and did not interfere with each other, this improved the stability and comfort of the robot. By the suspension system, the vibration of the robot can be effectively reduced, the impact between the parts of the robot was buffered, and the economy and reliability of the robot can be improved. Then on the basis of establishing the kinematics model of wheel-legged robot, the inverse kinematic equations was established by Vector method and Euler formula, and the relationship between actuator stroke and suspension rotation angle was obtained, meanwhile, the position and attitude control of wheel-legged robot was decoupled. In order to ensure the reliability and correctness of the inverse kinematics and kinematics control model of the robot, the 1/4 robot test rig was manufactured and a 1/4 bench model test was carried out on the basis of theoretical analysis. The simulation results were basically consistent with the bench test data, and the maximum error was within 1.5%, the correctness of the relationship between the motion pitch angle of the robot body and the rotation angle of each leg joint was verified under the condition of the participation of the kinematic model. Then, a robot pitching attitude control strategy was built in MATLAB with proportional control to realize the closed loop control under the condition that the center of robot centroid was fixed, Finally, the robot virtual model was built in ADAMS, and MATLAB and ADAMS were used to establish the joint simulation. The simulation results showed that the pitch attitude and the centroid position of the robot had a good tracking effect, and the position error and attitude error of the centroid were 0.2% and 2%, respectively. Therefore, the correctness of the closed-loop attitude control strategy of the wheel-legged robot was verified. The algorithm can maintain the position and attitude of the wheel-legged robot and reduced centroid offset when crossing obstacles, it enhanced the performance of wheel-legged robot as the agricultural robot, the performance of the all terrain mobile robot with active suspension provides a reference for the design of the motion position and attitude control of the modern agricultural robot.

       

    /

    返回文章
    返回