Abstract:
Abstract: The aim of this paper was to investigate the effect of temperature treatment on the metabolism function and muscle quality of grouper (♀Epinephelus fuscoguttatus×♂Epinephelus lanceolatus) before and after keeping alive with water for 72 h. Groupers with body weight of 503±31 g were cultured in laboratory without feeding for 48 h, then treated by temperature reduction to 13-14 ℃ at the rate of 2 ℃/h, and then kept alive at 15, 20, 25 ℃. According to the survival rate at different temperatures, the changes of water quality, blood biochemistry, metabolic enzyme activity and muscle quality were compared before and after keeping alive for 72 h. The results indicated that the survival rates of the groups at 15, 20, 25 ℃ after preservation for 96 h were 100%, 75% and 17%, respectively. The respiration rate was decreased as the temperature dropped, low temperature preservation (15 ℃) significantly reduced the contents of metabolites in the water, and the total ammonia nitrogen (TAN) yield in the 15 ℃ group decreased by 38.12%-57.76% compared with the 25 ℃ group. The results showed that low temperature could slow the deterioration of water quality by reducing the respiratory metabolism of fish and reducing the content of TAN and non-ionic ammonia nitrogen in water. The serum cortisol and blood glucose content were increased significantly in the hibernation group (P<0.05). After keeping alive for 72 h, the serum cortisol concentration in the 15 ℃ group decreased significantly, while the blood glucose concentration was higher than that in the 25 ℃ group (P<0.05). The results showed that hypothermia could decrease the stress response and induce the "hyperglycemia symptom" of fish during the keeping alive progress. After 72 h preservation, the serum glutamic-pyruvic transaminase, glutamic-oxalacetic transaminase, and creatine kinase activities in the 15 ℃ group showed no significant change (P>0.05); lactate dehydrogenase activity, the level of serum usea nitrogen, uric acid, and total protein increased, while triglyceride concentration decreased significantly (P<0.05). The contents of glycogen and crude fat in muscle decreased by 32.50% and 36.32% respectively, while the content of moisture, crude protein, lactic acid, and water holding capacity, and pH value had no significant change in the 15 ℃ group (P>0.05). The muscle quality in the 15 ℃ group was better than that in the 25 ℃ group. The results suggested that after the keeping alive at 25 ℃, the metabolism function of the grouper was increased by enhancing the activity of metabolic enzymes, which led to the deterioration of muscle quality. The dormant fish could maintain low metabolic level at 15 ℃ and improve survival ability. Therefore the most appropriate temperature for keeping alive of grouper is about 15 ℃ during the long-distance transport. The results provide a reference for the transport of grouper.