Abstract:
Abstract: In order to investigate the influence mechanism of soil texture, initial water content, pressure head and buried depth on soil wetting characteristics of horizontal moistube irrigation, a mathematical model of soil water movement under horizontal moistube irrigation was established based on HYDRUS-2D model, and the relationship between the specific flow rate and pressure head was determined. We compared HYDRUS-2D simulations of horizontal moistube irrigation with experimental data. The HYDRUS-2D predictions of the cumulative infiltration, wetting front distance and water content distribution were found to be in very good agreement with the data. The results supported the use of HYDRUS-2D as a tool for investigating and designing moistube irrigation management practices. In the case of different soil textures (sandy loam soil, loam soil and silty loam soil) and the same soil texture (loam soil) with different initial moisture contents (0.085, 0.106, 0.130 cm3/cm3), pressure water heads (0.6, 1.2, 1.8 m) and buried depths (20, 30, 40 cm), the dynamic change of wetted soil characteristics was simulated by HYDRUS-2D software. The results showed that: The transport distance of soil wetting front in 3 directions is vertical downward > horizontal direction > vertical upward, the influencing factors (soil texture, initial water content, pressure head and buried depth) have small impact on the shape of wetted pattern, and the contour of soil water content is approximately "concentric circle". Under the same soil initial water content, pressure head and buried depth, the soil texture has a significant influence on the wetted soil characteristics. When the soil texture is heavier, the wetting front moves slower, the difference of wetting front distance is smaller in each direction, the wetted soil volume is smaller, the soil water content near the moistube is higher, the contour of soil water content is more intensive, and the "center of the circle" is closer to the moistube. At the end of the irrigation, wetted soil volumes for loam soil and sandy loam soil are respectively 1.3 and 2.5 times that for silty loam soil. At the moistube wall, soil water content of 3 kinds of soils (sandy loam soil, loam soil and silty loam soil) is 0.276, 0.359 and 0.406 cm3/cm3 respectively. Under the same soil texture, pressure head and buried depth, the soil initial water content has a great influence on the wetted soil characteristics, and the distance of wetting front and the volume of wetted soil are positively correlated with soil initial water content, and increase with the increase of the soil initial water content. At the end of the irrigation, wetted soil volumes for soil initial water content of 0.106 and 0.130 cm3/cm3 are respectively 1.3 and 2.5 times that for 0.085 cm3/cm3. Under the same soil texture, soil initial water content and buried depth, the pressure head has a great influence on the wetted soil characteristics, and the distance of wetting front and the volume of wetted soil are positively correlated with pressure head, and increase with the increase of the pressure head. At the end of the irrigation, wetted soil volumes for pressure head of 1.2 and 1.8 m are respectively 1.6 and 2.2 times that for 0.6 m. At the moistube wall, soil water content of pressure heads (0.6, 1.2 and 1.8 m) is 0.323, 0.359 and 0.380 cm3/cm3 respectively. The buried depth of the moistube has a significant effect on the distribution position of the wetted soil. When the buried depth is shallow, the wetting front is easy to reach the ground surface. When the moistube is buried deeper, the wetted soil will move down synchronously with the buried depth.